search this blog

Showing posts with label Scythian. Show all posts
Showing posts with label Scythian. Show all posts

Monday, January 6, 2025

Leo Speidel & Pontus Skoglund


This quote, from a new paper at Nature, High-resolution genomic history of early medieval Europe by Speidel et al., is the most idiotic take on the ancestry of present-day Hungarians that I've ever read.

Present-day populations of Hungary do not appear to derive detectable ancestry from early medieval individuals from Longobard contexts, and are instead more similar to Scythian-related ancestry sources (Extended Data Fig. 6), consistent with the later impact of Avars, Magyars and other eastern groups.

In fact, present-day Hungarians are overwhelmingly derived from West Slavic and German peasants, showing only minor ancestry from early Magyars (or rather Hungarian Conquerors). So in terms of genetic ancestry they're basically typical East Central Europeans.

Scythians and Avars don't even deserve a mention in this context.

The reason that Speidel et al. found present-day Hungarians to be broadly similar to Scythians is because they used so called Hungarian Scythians in their analysis.

It's important to understand that these Hungarian Scythians are genetically fairly typical Central Europeans for their time, and, by and large, don't show any significant genetic relationship to Asian Scythians, Avars or early Magyars. So they're mostly either just acculturated Scythians or wrongly classified as Scythians by archeologists.

That is, the broad similarity that Speidel et al. found between present-day Hungarians and Hungarian Scythians derives from the fact that both of these populations are genetically Central Europeans, rather than the ridiculously false idea that they show strong genetic links to Avars, Hungarian Conquerors and other eastern groups.

Here's a Principal Component Analysis (PCA) of West Eurasian genetic variation, courtesy of the excellent Vahaduo:Global25 Views, that perfectly illustrates my point.

If Speidel et al. were correct about the genetic origin of present-day Hungarians, then the Hungarian_Modern and Hungary_Scythian samples would be shifted away from other Europeans, much like many of the Hungary_Avar and Hungary_Conqueror individuals. But that's obviously not the case, and instead they cluster strongly with, say, present-day Germans from Hamburg.

I emailed two of the authors of this paper, Leo Speidel and Pontus Skoglund, when they posted the preprint of the paper at bioRxiv to cordially discuss this issue (see here). But they totally ignored me.

Citation...

Speidel et al., High-resolution genomic history of early medieval Europe, Published online: 1 January 2025, https://doi.org/10.1038/s41586-024-08275-2

Saturday, November 4, 2023

Slavs have little, if any, Scytho-Sarmatian ancestry


Here's an abstract of a new study from the David Reich Lab about ancient Slavs, titled "Genetic identification of Slavs in Migration Period Europe using an IBD sharing graph". Emphasis is mine:

Popular methods of genetic analysis relying on allele frequencies such as PCA, ADMIXTURE and qpAdm are not suitable for distinguishing many populations that were important historical actors in the Migration Period Europe. For instance, differentiating Slavic, Germanic, and Celtic people is very difficult relying on these methods, but very helpful for archaeologists given a large proportion of graves with no inventory and frequent adoption of a different culture. To overcome these problems, we applied a method based on autosomal haplotypes. Imputation of missing genotypes and phasing was performed according to a protocol by Rubinacci et al. (2021), and IBD inference was done for ancient Eurasian individuals with data available at >600,000 1240K sites. IBD links for a subset of these individuals were represented as a graph, visualized with a force-directed layout algorithm, and clusters in this graph are inferred with the Leiden algorithm. One of the clusters in the IBD graph emerged that includes nearly all individuals in the dataset annotated archaeologically as “Slavic”. According to PCA a hypothesis for the origin of this population can be proposed: it was formed by admixture of a Baltic-related group with East Germanic people and Sarmatians or Scythians. The individuals belonging to the “Slavic” IBD sharing cluster form a chronological gradient on the PCA plot, with the earliest samples close to the Baltic LBA/EIA group. Later “Slavic” individuals are shifted to the right, closer to Central and Southern Europeans and probably reflecting further admixture of Slavs with local populations during the Migration Period.

Apparently this abstract is causing a bit of confusion online because of the mention of possible Sarmatian or Scythian ancestry in Slavs.

However, it's important to understand that the authors are referring to certain Slavic or even just Slavic-related individuals, usually from culturally heterogeneous frontier settlements deep in what is now Russia.

So yes, it's possible that some of these individuals carry Sarmatian, Scythian or other exotic eastern ancestry. But even if this is true, then obviously we can't extend this inference to all ancient and modern-day Slavs.

Indeed, below is a G25/Vahaduo Principal Component Analysis (PCA) that shows why modern-day Slavic speakers can't be linked genetically to Sarmatians or Scythians. To experience a more detailed version of the PCA paste the data here into the relevant field here.

As you can see, dear reader, most of the Slavs (Belarusians, Poles, Ukrainians and many Russians) cluster with the Irish near the western end of the plot.

Some Russians are shifted significantly east of them along the "Uralic cline" and, as a result, they cluster with various Uralic speakers such as Mordovians. That's because when Slavs migrated deep into what is now northern Russia they mixed with Uralic speakers who were there before them.

Most of the Sarmatians and Scythians form a cluster southeast of the Slavs and Irish because they carry significant levels of East Asian ancestry. This type of eastern ancestry is basically missing in modern-day Slavs (see here).

Several of the Scythians cluster among the Slavs and Irish, but that's because they're genetic outliers, whose existence, if anything, suggests that some Scythians had significant Slavic-related and/or Irish-related ancestry.

Now, even though most of the Slavs do cluster with the Irish in the above PCA plot, I strongly disagree with the authors of the abstract when they claim that "differentiating Slavic, Germanic, and Celtic people is very difficult" with PCA. It's actually pretty damn easy and I've been doing it successfully for many years. For instance, see here.

See also...

Wielbark Goths were overwhelmingly of Scandinavian origin

The Caucasus is a semipermeable barrier to gene flow

Saturday, May 9, 2020

Of horses and men #2


Fascinating stuff courtesy of Fages et al. at the Journal of Archaeological Science: Reports (emphasis is mine):

Abstract: The domestication of the horse and the development of new equestrian technologies have had a far-reaching impact on human history. Disentangling the respective role that horse males and females played during this process is, however, difficult based on iconography and osteological data alone. In this study, we leveraged an extensive ancient DNA time-series to determine the molecular sex of 268 horses spread across Eurasia and charted the male:female sex ratio through the last 40,000 years. We found even sex ratios in the Upper Palaeolithic and up until ~3900 years BP. However, we identified a striking over-representation of horse males in more recent osseous assemblages, which was particularly magnified in funerary contexts but also significant in non-ritual deposits. This suggests that the earliest horse herders managed males and females alike for more than one thousand years after domestication at Botai, but that the human representation and use of horses became gendered at the beginning of the Bronze Age, following the emergence of gender inequalities in human societies.

...

The time period around ~3900 years ago marked a drastic shift in male:female sex ratios inferred from excavated remains, after which the horse osteological record comprises approximately four males for every female (Fig. 2). This over-representation of horse males was maintained when disregarding those animals excavated from ritual burial sites (77/25 ~ 3.08 males for every female) and even more pronounced in the animal bones found in funerary contexts (66/14 ~ 4.71 males for every female). This indicates that the status of male and female horses dramatically changed during the Bronze Age period. This is in line with archaeozoological evidence from the Late Bronze Age cemeteries of the Volga-Ural region associated with the Sintashta, Potapovka and Petrovka cultures, that suggest a domination of male horses in funerary rates (Kosintsev, 2010). Interestingly, this pattern somehow mirrors that observed in humans, for whom a clear binary gender structure ubiquitous across all funerary practices, clothing, personal ornaments and representations is not observed during the Neolithic but became the norm from the transition between the Neolithic and the Bronze Age onwards (Robb and Harris, 2018). In addition, the prevalence of male horses in funerary contexts throughout the past three millennia is in line with archaeological evidence from burial sites (Bertašius and Daugnora, 2001, Taylor, 2017) and suggests that stallions (or geldings) were more prized for sacrificial rituals. This is possibly due to symbolic attributes then-associated with masculinity, mounted warriors and chariotry, such as power, protection and strength (Frie, 2018). In particular, petroglyph images associated with vehicles, characterized by two wheels with spokes, became typical by the late third – early second millennium BCE (Jacobson-Tepfer, 2012). They are generally associated with male warriors and the emergence of mobile warfare (Anthony, 2007) or ritual needs, in particular the passage to the after-life land (Jones-Bley, 2000). This suggests an essential ideological role of stallions and their use in elite warfare and ritual practices (Drews, 2004, Kelekna, 2009, Novozhenov and Rogozhonskiy, 2019).

...

Future research should focus on assessing the molecular sex of horses from Early and Middle Bronze Age Pit Grave and Catacomb cultures, which do show evidence for social inequality, but for which sex inequalities remain to be investigated.

Fages et al., Horse males became over-represented in archaeological assemblages during the Bronze Age, Journal of Archaeological Science: Reports Volume 31, June 2020, 102364, https://doi.org/10.1016/j.jasrep.2020.102364

See also...

Of horses and men

Inferring the linguistic affinity of long dead and non-literate peoples: a multidisciplinary approach

The mystery of the Sintashta people

Saturday, August 17, 2019

A surprising twist to the Shirenzigou nomads story


Remember those potentially Afanasievo-derived and Tocharian-related Shirenzigou nomads from the Ning et al. paper? Well, in my opinion, they're probably neither. The genotypes and other data for these Iron Age individuals from the eastern Tian Shan are available here.

Below are a few successful and not so successful qpAdm mixture models for them. Note that I tried to use a wide range of relevant "right pops", but also retain a lot of markers, specifically to be able to discriminate between different types of steppe and steppe-derived sources of gene flow (refer to the full output). Admittedly, the Shirenzigou nomads can be modeled with Afanasievo-related ancestry, but...

CHN_Shirenzigou_IA
KAZ_Botai 0.161±0.023
KAZ_Wusun 0.490±0.023
NPL_Mebrak_2125BP 0.349±0.019

chisq 5.793
tail prob 0.926172
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.143±0.022
NPL_Mebrak_2125BP 0.295±0.019
Saka_Tian_Shan 0.562±0.024

chisq 6.796
tail prob 0.870794
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.185±0.023
NPL_Mebrak_2125BP 0.428±0.021
RUS_Sintashta_MLBA 0.270±0.026
TJK_Sarazm_En 0.117±0.027

chisq 11.351
tail prob 0.414345
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.032±0.027
KAZ_Zevakinskiy_LBA 0.567±0.025
NPL_Mebrak_2125BP 0.401±0.019

chisq 15.157
tail prob 0.232961
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.452±0.031
RUS_Afanasievo 0.435±0.025
RUS_Okunevo_BA 0.114±0.049

chisq 19.808
tail prob 0.0708003
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.409±0.031
RUS_Okunevo_BA 0.173±0.050
Yamnaya_RUS_Caucasus 0.418±0.026

chisq 20.453
tail prob 0.0589872
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.464±0.033
RUS_Okunevo_BA 0.104±0.053
Yamnaya_RUS_Samara 0.432±0.027

chisq 27.189
tail prob 0.0072566
Full output

Both the Wusun and Saka are generally accepted to have been the speakers of Indo-Iranian languages. So it's possible that the Shirenzigou nomads were Indo-Iranian speakers too, or at least derived from such peoples.

Surprisingly, NPL_Mebrak_2125BP was the key to obtaining the best statistical fits. This is a trio of samples, roughly contemporaneous with the Shirenzigou nomads, from a burial site high up in the Himalayas in what is now Nepal (see here).

To be honest, I'm not quite sure why the Himalayan ancients work so well in my models. Perhaps they're just a really good proxy for an Iron Age population from the northern edge of the Tibetan Plateau?

By the way, most of the Shirenzigou nomads made it into the latest Global25 datasheets (see here). They can be analyzed in a variety of ways described in this blog post: Getting the most out of the Global25. Below is a screen cap of me comparing the effectiveness of Afanasievo, Sintashta and Wusun samples as proxies for the steppe ancestry in the Shirenzigou nomads with an online tool freely available here. As expected, the algorithm picks Sintashta ahead of Afanasievo, and the Wusun ahead of both.


See also...

They mixed up Huns with Tocharians

Some myths die hard

The mystery of the Sintashta people

Sunday, July 28, 2019

They mixed up Huns with Tocharians


I don't yet have the genomes from the recent Ning et al. paper on the Iron Age nomads from the Shirenzigou site in the eastern Tian Shan. But I do have most of the previously published data featured in the paper, including the Damgaard et al. 2018 Hun and Saka samples from the western Tian Shan.

After reading the Ning et al. paper between the lines and running a few analyses of my own, it's clear to me that most of the supposedly Tocharian-related Shirenzigou individuals actually share a very close relationship with the Tian Shan Huns, and indeed may have been their ancestors.

For instance, Ning et al. found that a large part of the ancestry of the Shirenzigou ancients could be modeled with the Tian Shan Huns, which was an anachronistic approach because the former are older than the latter. They also found that Ulchi-related ancestry was a key part of the genetic structure of eight out of the ten Shirenzigou individuals, and this likewise appears to be an important part of the genetic structure of the Tian Shan Huns.

Note the strong statistical fits in the Global25/nMonte and qpAdm mixture models below, respectively, which characterize these Huns as a two-way mixture between the Ulchi and the earlier Tian Shan Saka. And keep in mind that the Saka also harbor significant Ulchi-related ancestry.

Hun_Tian_Shan
Saka_Tian_Shan,92
Ulchi,8

distance%=1.2553

Hun_Tian_Shan
Saka_Tian_Shan 0.928±0.009
Ulchi 0.072±0.009

chisq 4.409
tail prob 0.992464
Full output

Moreover, the Shirenzigou males belong to Y-haplogroups Q1a and R1b (two instances of each), and they share the latter with one of the Tian Shan Huns. Judging by the data from the relevant BAM files, it's also possible that the Shirenzigou males share a very rare subclade of R1b with the Hun, defined by the PH155 mutation (see here). The Y-haplogroup assignments for the other Tian Shan Huns end at R and R1, but that's almost certainly due to missing data.

On the other hand, two Tian Shan Sakas belong to Y-haplogroup R1a but none to R1b, which fits with the pattern from currently available ancient DNA that R1a was more common than R1b in Saka-related groups, such as the Scythians and Sarmatians (see here).

This is all very interesting, because the Huns replaced the Saka in the western Tian Shan, and, considering their R1b and excess Ulchi-related ancestry, very likely moved into the region from the direction of Shirenzigou. Indeed, in my opinion a strong argument can now be made that the Iron Age population from the Shirenzigou region took part in the formation of the Hunnic confederacy.

So where does that leave the theory presented by Ning et al. that the Shirenzigou ancients may have been closely related, and perhaps even ancestral, to the Tocharians, simply because they packed a lot of Yamnaya-related and possibly proto-Tocharian Afanasievo ancestry, and were living close to the Tarim Basin, where Tocharian languages were subsequently first attested?

I'm not sure, but I now find it difficult to reconcile this theory with the fact that they were closely related, and probably ancestral, to the Tian Shan Huns. As far as I'm aware, Huns cannot be linked to Tocharians in any meaningful way.

Of course it's possible that different Afanasievo-derived groups were living in the Tarim Basin and surrounds, and, as some merged with new populations pushing into the region from the east and adopted non-Indo-European languages, others retained their Tocharian speech and eventually split into communities speaking Tocharian A, B and apparently also C (see here).

But this has to be demonstrated directly with ancient DNA from archeological sites where Tocharian languages were attested. Till then, I'll keep thinking that Ning et al. wrote a paper about Tocharians that really should've been a paper about Huns.

Here's a famous wall painting of Tocharian princes from the cave of the sixteen sword-bearers in the Tarim Basin, dated to 432–538 AD. They don't look like guys with a lot of Ulchi-related admixture to me, but I might be wrong. Feel free to let me know what you think in the comments below.


Update 08/17/2019: The Shirenzigou nomads are now in my dataset. Below are a few successful and not so successful qpAdm mixture models for them. Note that I tried to use a wide range of relevant "right pops", but also retain a lot of markers, specifically to be able to discriminate between different types of steppe and steppe-derived sources of gene flow (refer to the full output). Admittedly, the Shirenzigou nomads can be modeled with Afanasievo-related ancestry, but...

CHN_Shirenzigou_IA
KAZ_Botai 0.161±0.023
KAZ_Wusun 0.490±0.023
NPL_Mebrak_2125BP 0.349±0.019

chisq 5.793
tail prob 0.926172
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.143±0.022
NPL_Mebrak_2125BP 0.295±0.019
Saka_Tian_Shan 0.562±0.024

chisq 6.796
tail prob 0.870794
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.185±0.023
NPL_Mebrak_2125BP 0.428±0.021
RUS_Sintashta_MLBA 0.270±0.026
TJK_Sarazm_En 0.117±0.027

chisq 11.351
tail prob 0.414345
Full output

CHN_Shirenzigou_IA
KAZ_Botai 0.032±0.027
KAZ_Zevakinskiy_LBA 0.567±0.025
NPL_Mebrak_2125BP 0.401±0.019

chisq 15.157
tail prob 0.232961
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.452±0.031
RUS_Afanasievo 0.435±0.025
RUS_Okunevo_BA 0.114±0.049

chisq 19.808
tail prob 0.0708003
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.409±0.031
RUS_Okunevo_BA 0.173±0.050
Yamnaya_RUS_Caucasus 0.418±0.026

chisq 20.453
tail prob 0.0589872
Full output

CHN_Shirenzigou_IA
NPL_Mebrak_2125BP 0.464±0.033
RUS_Okunevo_BA 0.104±0.053
Yamnaya_RUS_Samara 0.432±0.027

chisq 27.189
tail prob 0.0072566
Full output

Both the Wusun and Saka are generally accepted to have been the speakers of Indo-Iranian languages. So it's possible that the Shirenzigou nomads were Indo-Iranian speakers too, or at least derived from such peoples.

Surprisingly, NPL_Mebrak_2125BP was the key to obtaining the best statistical fits. This is a trio of samples, roughly contemporaneous with the Shirenzigou nomads, from a burial site high up in the Himalayas in what is now Nepal (see here).

To be honest, I'm not quite sure why the Himalayan ancients work so well in my models. Perhaps they're just a really good proxy for an Iron Age population from the northern part of the Tibetan Plateau? By the way, most of the Shirenzigou nomads made it into the latest Global25 datasheets (see here).

See also...

Almost everything you ever wanted to know about the Xiaohe-Gumugou cemeteries

The mystery of the Sintashta people

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Sunday, May 5, 2019

Conan the Barbarian probably belonged to Y-haplogroup R1a


A fresh batch of Iron Age genomes from across the Eurasian steppes is about to be published along with a new paper at Current Biology. The manuscript, titled Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance, is still under review but freely available here.

Most of the male ancients, including two Cimmerians from the North Pontic steppe, in what is now Ukraine, belong to Y-chromosome haplogroup R1a. Wasn't Conan the Barbarian supposed to be a Cimmerian? From the preprint, emphasis is mine:

The Early Iron Age nomadic Scythians have been described as a confederation of tribes of different origins, based on ancient DNA evidence [1-3]. It is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome sequences of 31 ancient Western and Eastern Steppe individuals including Scythians as well as samples pre- and postdating them, allowing us to set the Scythians in a temporal context (in the Western/Ponto-Caspian Steppe). We detect an increase of eastern (Altaian) affinity along with a decrease in Eastern Hunter-Gatherer (EHG) ancestry in the Early Iron Age Ponto- Caspian gene pool at the start of the Scythian dominance. On the other hand, samples of the Chernyakhiv culture postdating the Scythians in Ukraine have a significantly higher proportion of Near Eastern ancestry than other samples of this study. Our results agree with the Gothic source of the Chernyakhiv culture and support the hypothesis that the Scythian dominance did involve a demic component.

...

Out of the 31 samples of this study, 16 are male, and with sufficient Y-chromosome coverage for haplogroup assignment (Table S2). R1a (43%) and I (27%) are the two most frequent Y- chromosome hgs in present-day Ukrainians [142]. R1a is also the predominant lineage among Cimmerians, Scy_Ukr and ScySar_SU in our data, and present among Scy_Kaz as well. Thus, although acknowledging our small sample size, the individuals sampled from archaeological context associated with Scythian identity do not appear to stand out from the context of other groups living in the region before and after them. One notable difference from the present is the absence of hg N, nowadays widespread in the Volga-Uralic region and West Siberia as well as among Mongols and Altaians [165-167]; however, this result is consistent with the absence of hg N among Bronze Age and Eneolithic males from the Steppe [168]. In context of their claimed Altaian homeland it is interesting to note that one Scy_Ukr and the single Sar_Cau sample belong to the Q1c-L332 lineage which is a sub-clade of hg Q1c-L330 that today has peak frequency of 68% in Western Mongolians [169] and occurs at 17% in South Altaians [170] while being very rare (<1%) in East European populations and absent elsewhere (https://www.yfull.com/tree/Q-L330/).


Järve et al., Shifts in the Genetic Landscape of the Western Eurasian Steppe Associated with the Beginning and End of the Scythian Dominance, Current Biology (preprint), Posted: 6 Mar 2019, http://dx.doi.org/10.2139/ssrn.3346985

Update 12/07/2019: The paper has just been published and is freely available at Current Biology [LINK].

See also...

The mystery of the Sintashta people

On the association between Uralic expansions and Y-haplogroup N

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...