search this blog

Showing posts with label Urals. Show all posts
Showing posts with label Urals. Show all posts

Saturday, June 13, 2020

The Abashevo axe did it (Mednikova et al. 2020)


Open access at the Journal of Imaging over at this LINK. From the paper, emphasis is mine:

A massive bronze battle axe from the Abashevo archaeological culture was studied using neutron tomography and manufacturing modeling from production molds. Detailed structural data were acquired to simulate and model possible injuries and wounds caused by this battle axe. We report the results of neutron tomography experiments on the bronze battle axe, as well as manufactured plastic and virtual models of the traumas obtained at different strike angles from this axe. The reconstructed 3D models of the battle axe, plastic imprint model, and real wound and trauma traces on the bones of the ancient peoples of the Abashevo archaeological culture were obtained. Skulls with traces of injuries originate from archaeological excavations of the Pepkino burial mound of the Abashevo culture in the Volga region. The reconstruction and identification of the injuries and type of weapon on the restored skulls were performed. The complementary use of 3D visualization methods allowed us to make some assumptions on the cause of death of the people of the Abashevo culture and possible intra-tribal conflict in this cultural society. The obtained structural and anthropological data can be used to develop new concepts and methods for the archaeology of conflict.

...

Human skeletal remains from excavations of the Pepkino burial mound bear many traumatic wounds on the skulls and postcranial bones (Figure 4). The primary hypothesis is that young men of the Abashevo culture fell at the hands of enemies, which were the representatives of another tribe or culture [14,16]. After their discovery in the XX century, the skulls of killed people of the Abashevo culture were restored using anthropological paste, including beeswax.

...

A simple explanation for obtaining such injuries is the conclusion that the victim stood face to face with their assaulter and tried to back away from the battle axe, but fell and received other lethal wounds. The superficial trauma by the battle axe as well as serious damage to a bone structure and deep cracks in the skull are visible in the upper part of the model.

...

The comparison of the real bronze axe with the model obtained from molds indicates their complete identity and the belonging of these axes from different archaeological sites of the Abashevo culture to the same cultural group. This conclusion may indicate intra-cultural conflict among the Abashevo people. As a final note, the presented results of quite diverse imaging methods indicate a new direction in the archaeology of conflicts and the applicability of 3D modeling methods to identify both weapons technologies and the specifics of the use of these weapons to injure humans.



Citation...

Mednikova et al., The Reconstruction of a Bronze Battle Axe and Comparison of Inflicted Damage Injuries Using Neutron Tomography, Manufacturing Modeling, and X-ray Microtomography Data, J. Imaging 2020, 6(6), 45; https://doi.org/10.3390/jimaging6060045

See also...

Monday, December 9, 2019

The BOO people: earliest Uralic speakers in the ancient DNA record?


N-L1026 is the Y-chromosome haplogroup most closely associated with the speakers of Uralic languages. Thus far, the oldest published instances of N-L1026 are in two Siberian-like samples dating to 1473±87 calBCE from the site of Bolshoy Oleni Ostrov (BOO), located within the Arctic Circle in the Kola Peninsula, northern Russia.

So does this mean that the BOO people were Uralic speakers? I'm now thinking that it probably does, even though, as the scientists who published the BOO samples a year ago pointed out, they predate most estimates of the spread of extant Uralic languages into the Kola Peninsula (see Lamnidis et al. here).

Hundreds of ancient human samples from across Eurasia have been sequenced since last year. In fact, thousands if we count unpublished data. But only a handful of them belong to N-L1026.

Indeed, as far as I know, the next oldest instance of N-L1026 from Europe after those at BOO is still in an Iron Age sample from what is now Estonia published earlier this year as 0LS10. Of course, this individual was in all likelihood an early west Uralic (Finnic) speaker (see Saag et al. here).

Moreover, consider these comments by Murashkin et al. in regards to the BOO site (referred to as KOG in their paper, available here):

Most of the bodies had been buried in wooden, boat-shaped, lidded caskets, which looked like small boats or traditional Sámi sledges (Ru. kerezhka).

...

The morphological characteristics of the skull series of the KOG are not like those of any other ancient or modern series from the Kola Peninsula, including the Sámi people. Instead, the series shows closer biological affinities with ancient Altai Neolithic and modern, Ugric-speaking Siberian groups (Moiseyev & Khartanovich 2012). It has earlier been suggested that modern Ugric-speaking Siberians, together with Samoyeds and Volga Finnic populations, share some common morphological characteristics that indicate their common origin (Alekseyev 1974; Bunak 1956; Gokhman 1992).

...

Based on the materials from the grave field, we can argue that there were direct or indirect contacts between the inhabitants of the Kola Peninsula and southern and western Scandinavia (Murashkin & Tarasov 2013).

Thus, the BOO people may have spoken an early west Uralic language related to Sami languages. It's also possible that they are in part ancestral to the N-L1026-rich Sami people.

Another intriguing thing about these mysterious ancients is that individual BOO003 belongs to the rare mitochondrial haplogroup T2d1b1. Now, this clearly is not a lineage native to Europe or indeed any part of North Eurasia. Its ultimate source is probably West or Central Asia. So how did this pioneer polar explorer end up with such an unusual and exotic mtDNA marker, and might the answer be an important clue about the origins of the BOO people?

The most plausible explanation is that the ancestors of BOO003 were associated with the Seima-Turbino phenomenon, which stretched from the taiga zone to the oases of what is now western China along the Ob-Irtysh river system, and probably facilitated cultural, linguistic and genetic exchanges between the populations of North Eurasia and Central Asia.

In other words, considering all of the clues, it would seem that the BOO people came from some part of the Ob-Irtysh basin, which might thus be the best place to look for the population with the oldest and phylogenetically most basal N-L1026 lineages. And if we find that, then we've probably found the proto-Uralians and their homeland.


Below is a Principal Component Analysis (PCA) based on Global25 data featuring the earliest likely Uralic speakers in the ancient DNA record. It was produced with an online PCA runner freely available here. EST_IA includes the above mentioned 0LS10, while FIN_Levanluhta_IA is largely made up of Saami-related samples from western Finland. See anything interesting? Feel free to let me know about it in the comments below.


See also...

Big deal of 2019: ancient DNA confirms the link between Y-haplogroup N and Uralic expansions

It was always going to be this way

More on the association between Uralic expansions and Y-haplogroup N

Sunday, December 1, 2019

Big deal of 2019: ancient DNA confirms the link between Y-haplogroup N and Uralic expansions


The academic consensus is that Indo-European languages first spread into the Baltic region from the Eastern European steppes along with the Corded Ware culture (CWC) and its people during the Late Neolithic, well before the expansion of Uralic speakers into Fennoscandia and surrounds, probably from somewhere around the Ural Mountains.

On the other hand, the views that the Uralic language family is native to Northern Europe and/or closely associated with the CWC are fringe theories usually espoused by people not familiar with the topic or, unfortunately it has to be said, mentally unstable trolls.

The likely close relationship between the CWC expansion and the early spread of Indo-European languages was discussed in several papers in recent years (for instance, see here). This year, we saw the first ancient DNA paper focusing on the transition from the Bronze Age to the Iron Age in the East Baltic, including the likely first arrival of Uralic speech in what is now Estonia.

Published in Current Biology courtesy of Saag et al., the paper showed that the genetic structure of present-day East Baltic populations largely formed in the Iron Age (see here). It was during this time, the authors revealed, that the region experienced a sudden influx of Y-chromosome haplogroup N, which is today common in many Uralic speaking populations and often referred to as a Proto-Uralic marker. Little wonder then that Saag et al. linked this genetic shift in the East Baltic to the westward migrations of early Uralic speakers.

The table below, based on data from the Saag et al. paper, surely doesn't leave much to the imagination about what happened.


Unfortunately, I have to say that the genome-wide analysis in the paper was less informative than it could have been. The authors focused their attention on rather broad genetic components, and, as a result, missed an interesting fine scale distinction between their Bronze Age and Iron Age samples. The spatial maps below, based on my Global25 data for most of the ancients from Saag et al., show what I mean. The hotter the color the higher the genetic similarity between them and present-day West Eurasian populations.

Note that the Bronze Age (Baltic_EST_BA) samples are most similar to the Baltic-speaking, and thus also Indo-European-speaking, Latvians and Lithuanians, rather than the Uralic-speaking Estonians, even though they're from burial sites in Estonia. On the other hand, the Iron Age (Baltic_EST_IA) samples show strong similarity to a wider range of populations, including Estonians and many other Uralic-speaking groups.




See also...

It was always going to be this way

Fresh off the sledge

More on the association between Uralic expansions and Y-haplogroup N

Sunday, April 7, 2019

On the association between Uralic expansions and Y-haplogroup N


Almost all present-day populations speaking Uralic languages show moderate to high frequencies of Y-chromosome haplogroup N. I reckon there are two likely explanations for this:

- the speakers of Proto-Uralic were rich in N because they lived in an area, probably somewhere around the Ural Mountains, where it was common, and they spread it with them as they expanded from their homeland

- Uralic languages often came to be spoken in areas of North Eurasia where N was already found at moderate to high frequencies

The major exception to this rule are Hungarians, whose language belongs to the Ugric branch of Uralic. Their frequency of N is close to zero and they don't differ much in terms of overall genetic structure from their Indo-European-speaking neighbors in East Central Europe.


This is an issue that has generated much debate over the years about the nature of Uralic expansions, who the Hungarians really were, and how the Hungarian language came to be spoken in the heart of Europe.

But I never understood what the fuss was about, because based on historical sources alone it seemed rather obvious that Hungarian was introduced into the Carpathian Basin during the Middle Ages by a relatively small number of invaders from the east, probably from somewhere around the Ural Mountains, who imposed it on local Indo-European-speaking populations.

As far as I can remember, this has always been the academic consensus, and the results from one of the first ancient DNA studies of human remains soundly corroborated it. Back in 2008, Csányi et al. reported that two out of four skeletons from elite Hungarian conqueror graves dating to the 10th century carried the Tat C allele, which meant that they belonged to Y-haplogroup N (see here).

We've since had to wait over a decade to get a more comprehensive look at the Y-chromosome haplogroups of medieval Hungarians. The most useful effort to date, a manuscript courtesy of Neparáczki et al., was posted this week at bioRxiv (see here).

The results in the preprint suggest a much more complex picture than simply a migration of an obviously Uralic-speaking population rich in Y-haplogroup N into the medieval Carpathian Basin. But they do confirm the presence of N in Hungarian conqueror elites, and, in fact, of very specific subclades of N that link them to the present-day speakers of Uralic languages from around the Ural Mountains. Here are some pertinent quotes from the prepint:

Three Conqueror samples belonged to Hg N1a1a1a1a2-Z1936, the Finno-Permic N1a branch, being most frequent among northeastern European Saami, Finns, Karelians, as well as Komis, Volga Tatars and Bashkirs of the Volga-Ural region. Nevertheless this Hg is also present with lower frequency among Karanogays, Siberian Nenets, Khantys, Mansis, Dolgans, Nganasans, and Siberian Tatars 23.

...

It is generally accepted that the Hungarian language was brought to the Carpathian Basin by the Conquerors. Uralic speaking populations are characterized by a high frequency of Y-Hg N, which have often been interpreted as a genetic signal of shared ancestry. Indeed, recently a distinct shared ancestry component of likely Siberian origin was identified at the genomic level in these populations, modern Hungarians being a puzzling exception 36. The Conqueror elite had a significant proportion of N Hgs, 7% of them carrying N1a1a1a1a4-M2118 and 10% N1a1a1a1a2-Z1936, both of which are present in Ugric speaking Khantys and Mansis 23.

...

Population genetic data rather position the Conqueror elite among Turkic groups, Bashkirs and Volga Tatars, in agreement with contemporary historical accounts which denominated the Conquerors as “Turks” 38. This does not exclude the possibility that the Hungarian language could also have been present in the obviously very heterogeneous, probably multiethnic Conqueror tribal alliance.

Indeed, a large proportion of the 44 males from elite Hun, Avar and Hungarian Conqueror burials analyzed in the study belonged to Y-haplogroups that can't be plausibly associated with the earliest Uralic speakers, but rather with those of various Indo-European languages, such as I1 and R1b-U106 (these are Germanic-specific markers), I2a-L621 and R1a-CTS1211 (obviously Slavic) and R1a-Z2124 (largely Eastern Iranian).

If most of these results aren't due to contamination, then it's likely that both the early Hungarian commoners and elites were, by and large, derived from Indo-European-speaking populations. No wonder then, that present-day Hungarians are basically indistinguishable genetically from their Indo-European-speaking neighbors and, like them, show hardly any Y-haplogroup N.

See also...

Hungarian Conquerors were rich in Y-haplogroup N (Fóthi et al. 2020)

More on the association between Uralic expansions and Y-haplogroup N

Ancient DNA confirms the link between Y-haplogroup N and Uralic expansions

Monday, December 3, 2018

On the trail of the Proto-Uralic speakers (work in progress)


Historical linguists have long posited that Fennoscandia was a busy contact zone between early Germanic and Uralic languages. The first ancient DNA samples from what is now Finland have corroborated their inferences, by showing that during the Iron Age the western part of the country was inhabited by a genetically heterogeneous population closely related to both the Uralic-speaking Saami and Germanic-speaking southern Scandinavians.

The samples were sequenced and analyzed by two different teams of researches, and their findings published recently in Lamnidis et al. and Sikora et al. (see here and here, respectively).

This is how most of these ancients, whose remains were excavated from the Levanluhta burial site dated to 300–800 CE, behave in a Principal Component Analysis (PCA) based on my Global25 data. Levanluhta_IA are the Saami-related samples, while Levanluhta_IA_o is an Scandinavian-like outlier. Baltic_IA is an Iron Age individual from what is now Lithuania from the recent Damgaard et al. paper (see here). Note the accuracy of the Global25 data in pinpointing their genetic affinities and also the trajectory of the Levanluhta_IA cluster, which seems to be "pulling" towards Levanluhta_IA_o.



The Saami and Levanluhta_IA are clear outliers from the main Northern European cluster. There are two reasons for this: excess East Asian/Siberian-related ancestry and Saami-specific genetic drift. However, this eastern admixture and genetic drift are shared in varying degrees by other North European populations, especially those that also speak Uralic languages, and this is why they appear to be "pulling" towards the Saami/Levanluhta_IA clusters in my PCA. Thus, what this suggests is that the expansion of Uralic languages across Northeastern Europe was intimately linked with the spread of Siberian-related ancestry into the region.

This idea has been around for a long time and is now becoming even more widely accepted (see here). However, Lamnidis et al. also featured samples from a likely pre-Uralic (1523±87 calBCE) burial site at Bolshoy Oleni Ostrov in the Kola Peninsula, present-day northern Russia, and, perhaps surprisingly, found that they showed even more Siberian-related ancestry than Levanluhta_IA. So what's going on?

I'm confident that this discrepancy can be explained by multiple waves of migrations from the east into Northeastern Europe, possibly before, during and after the time of the people buried at Bolshoy Oleni Ostrov, by pre-Uralic, para-Uralic and/or Proto-Uralic-speaking populations.

Consider the following qpAdm output, in which Levanluhta_IA is just barely modeled successfully as a two-way mixture between Levanluhta_IA_o and Bolshoy_Oleni_Ostrov. The statistical fit improves significantly with the addition of Glazkovo_EBA as a third mixture source. This is an ancient population from near Lake Baikal dated to 4597-3726 BC from the aforementioned Damgaard et al. paper.

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.468±0.036
Levanluhta_IA_o 0.532±0.036
chisq 19.129
tail prob 0.0854706
Full output

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.241±0.092
Glazkovo_EBA 0.162±0.059
Levanluhta_IA_o 0.597±0.046
chisq 7.756
tail prob 0.734966
Full output

For the sake of being complete, I also tested whether Levanluhta_IA_o could be substituted by other similar ancient samples from the neighborhood, including those associated with the Battle-Axe and Corded Ware cultures. There's not much to report; qpAdm returned poor statistical fits and/or implausible ancestry proportions (for the full output from my runs, see here). Baltic_IA did produce a statistically sound model, but with excess Glazkovo_EBA-related ancestry. I also had to drop Bolshoy_Oleni_Ostrov from the analysis to make things work, which suggests to me that the result shouldn't be taken too literally.

Levanluhta_IA
Baltic_IA 0.677±0.034
Glazkovo_EBA 0.323±0.034
chisq 8.547
tail prob 0.741095
Full output

So as far as I can see, the western ancestry in Levanluhta_IA is likely to be mostly of Germanic origin, and thus Indo-European, meaning that it's logical to look east, perhaps far to the east, for the source of its Uralic ancestry. This might seem like a complicated and uncertain task, considering that Levanluhta_IA could well be at least a thousand years younger than the first entry of Uralic speakers into Fennoscandia. However, take a look what happens when I substitute Glazkovo_EBA with a variety of Uralic-speaking populations from around the Ural Mountains, which is where the Proto-Uralic homeland is generally considered to have been located.

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.210±0.091
Khanty 0.283±0.090
Levanluhta_IA_o 0.507±0.035
chisq 7.007
tail prob 0.798532
Full output

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.193±0.098
Levanluhta_IA_o 0.495±0.035
Mansi 0.312±0.100
chisq 7.884
tail prob 0.7237
Full output

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.300±0.065
Levanluhta_IA_o 0.337±0.072
Mari 0.363±0.121
chisq 8.393
tail prob 0.677705
Full output

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.238±0.084
Levanluhta_IA_o 0.553±0.036
Nenets 0.209±0.067
chisq 7.210
tail prob 0.78181
Full output

Levanluhta_IA
Bolshoy_Oleni_Ostrov 0.302±0.069
Levanluhta_IA_o 0.324±0.081
Udmurt 0.373±0.135
chisq 9.195
tail prob 0.60393
Full output

All of these models look great, and easily rival the best model with Glazkovo_EBA. Moreover, they make good sense in terms of linguistics. The only problem is that they're anachronistic, because the Uralic-speaking reference populations are younger than Levanluhta_IA. So I can't be certain that they reflect reality without corroboration from ancient DNA. It might turn out, for instance, that a Glazkovo_EBA-like population was already present somewhere deep in Europe before or during the time of Bolshoy_Oleni_Ostrov, while no such population existed around the Ural Mountains until the time of Levanluhta_IA.

By the way, it might be important to note that the present-day Finnish samples in my dataset can't be modeled as a mixture between Levanluhta_IA and Levanluhta_IA_o. But they can be modeled as a mixture between Baltic_IA and Levanluhta_IA. I don't know which part of Finland they're from exactly; probably all over the place, so it'd be useful to test regional Finnish populations to see how they behave in such models. Of course, Finns aren't Saamic speakers, they're Finnic speakers, and they're probably the result of a more recent Uralic expansion into Fennoscandia than the one that gave rise to the Saami.

Finnish
Baltic_IA 0.671±0.076
Levanluhta_IA 0.329±0.076
chisq 14.114
tail prob 0.293508
Full output

Damgaard et al. didn't report the Y-haplogroup for Baltic_IA, but the word round the campfire is that this individual belonged to N1c, which is today the most common Y-haplogroup among Uralic speakers. Obviously, we need a lot more ancient DNA to sort all of this out, but things are already looking pretty much as expected. Stay tuned for new posts in this series following the publication of more ancient DNA relevant to this fascinating topic.

See also...

How did Y-haplogroup N1c get to Bolshoy Oleni Ostrov?

The Uralic cline in the Global25

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Saturday, September 22, 2018

Corded Ware people =/= Proto-Uralics (Tambets et al. 2018)


A new paper on the genetic structure of Uralic-speaking populations has appeared at Genome Biology (see here). It looks to me like the prelude to a forthcoming paleogenetics paper on the same topic that was discussed in the Estonian media recently (see here). Although not exactly ground breaking (because it basically argues what I've been saying at this blog for years, like here), it's a very nice effort all round and must be read by anyone with an interest in this topic. From the paper, emphasis is mine:

Background The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian origin is distinctively high among European Uralic speakers. The autosomal variation of Uralic speakers, however, has not yet been studied comprehensively.

Results: Here, we present a genome-wide analysis of 15 Uralic-speaking populations which cover all main groups of the linguistic family. We show that contemporary Uralic speakers are genetically very similar to their local geographical neighbours. However, when studying relationships among geographically distant populations, we find that most of the Uralic speakers and some of their neighbours share a genetic component of possibly Siberian origin. Additionally, we show that most Uralic speakers share significantly more genomic segments identity-by-descent with each other than with geographically equidistant speakers of other languages. We find that correlated genome-wide genetic and lexical distances among Uralic speakers suggest co-dispersion of genes and languages. Yet, we do not find long-range genetic ties between Estonians and Hungarians with their linguistic sisters that would distinguish them from their non-Uralic-speaking neighbours.

Conclusions: We show that most Uralic speakers share a distinct ancestry component of likely Siberian origin, which suggests that the spread of Uralic languages involved at least some demic component.

...

Recent aDNA studies have shown that extant European populations draw ancestry form three main migration waves during the Upper Palaeolithic, the Neolithic and Early Bronze Age [2, 3, 45]. The more detailed reconstructions concerning NE Europe up to the Corded Ware culture agree broadly with this scenario and reveal regional differences [65–67]. However, to explain the demographic history of extant NE European populations, we need to invoke a novel genetic component in Europe—the Siberian. The geographic distribution of the main part of this component is likely associated with the spread of Uralic speakers but gene flow from Siberian sources in historic and modern Uralic speakers has been more complex, as revealed also by a recent study of ancient DNA from Fennoscandia and Northwest Russia [68]. Thus, the Siberian component we introduce here is not the perfect but still the current best candidate for the genetic counterpart in the spread of Uralic languages.


Citation...

Tambets et al., Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations, Genome Biology, (2018) 19:139 https://doi.org/10.1186/s13059-018-1522-1

See also...

Big deal of 2019: ancient DNA confirms the link between Y-haplogroup N and Uralic expansions