search this blog

Sunday, November 11, 2018

The story of the earliest wine


Here's an interesting YouTube video about the origin and spread of wine making. Many of you might also appreciate the discussion about the Kura-Araxes Culture (about 26 minutes into the presentation)...


See also...

A potentially violent end to the Kura-Araxes Culture (Alizadeh et al. 2018)

How relevant is Arslantepe to the PIE homeland debate?

Likely Yamnaya incursion(s) into Northwestern Iran

Monday, November 5, 2018

On the spread of dairy pastoralism to East Asia (Jeong & Wilkin et al. 2018)


Over at PNAS at this LINK. Below is the abstract and a table with the uniparental haplogroups for the 20 ancient samples from the paper. Emphasis is mine.

Recent paleogenomic studies have shown that migrations of Western steppe herders (WSH) beginning in the Eneolithic (ca. 3300–2700 BCE) profoundly transformed the genes and cultures of Europe and central Asia. Compared with Europe, however, the eastern extent of this WSH expansion is not well defined. Here we present genomic and proteomic data from 22 directly dated Late Bronze Age burials putatively associated with early pastoralism in northern Mongolia (ca. 1380–975 BCE). Genome-wide analysis reveals that they are largely descended from a population represented by Early Bronze Age hunter-gatherers in the Baikal region, with only a limited contribution (∼7%) of WSH ancestry. At the same time, however, mass spectrometry analysis of dental calculus provides direct protein evidence of bovine, sheep, and goat milk consumption in seven of nine individuals. No individuals showed molecular evidence of lactase persistence, and only one individual exhibited evidence of >10% WSH ancestry, despite the presence of WSH populations in the nearby Altai-Sayan region for more than a millennium. Unlike the spread of Neolithic farming in Europe and the expansion of Bronze Age pastoralism on the Western steppe, our results indicate that ruminant dairy pastoralism was adopted on the Eastern steppe by local hunter-gatherers through a process of cultural transmission and minimal genetic exchange with outside groups.


Jeong & Wilkin et al., Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe, PNAS published ahead of print November 5, 2018 https://doi.org/10.1073/pnas.1813608115

See also...

The mystery of the Sintashta people

Thursday, November 1, 2018

Big deal of 2018: Yamnaya not related to Maykop


I was going to write this post after the genotype data from the Wang et al. preprint on the genetic prehistory of the Greater Caucasus became available, because I wanted to demonstrate a few key points with analyses of my own. But I've got a hunch that the formal publication of the manuscript, and thus also the release of the data, has been indefinitely delayed for one reason or another. So here goes anyway, the big deal of 2018...

This year, ancient DNA has revealed that the populations associated with the Maykop and Yamnaya archeological cultures were genetically distinct from each other, and, in all likelihood, didn't mix to any significant degree. Case in point: an ADMIXTURE analysis from Wang et al. 2018.


No doubt, this is quite a shock for many people, especially those of you who consider Maykop to have been a Proto-Indo-European-speaking culture that either gave rise to Yamnaya or at least Indo-Europeanized it. So now, if you still want to see Maykop as the Indo-Europeanizing agent in the Pontic-Caspian steppe, you'll have to rely solely on archeological and linguistics data, and also keep in mind that ancient DNA has slapped you in the face.

In just a few years, ancient DNA has provided us with plenty of shocks, but this is arguably among the biggest.

However, I honestly can't say that it was a huge surprise for me, because I tentatively predicted this outcome more than two years ago based on a handful of mitochondrial (mtDNA) haplotypes (see here). Certainly, analyzing genome-wide genetic data is what I thrive on, but if that's off limits, then eyeballing even a few mtDNA markers can also be very useful.

Wang et al. easily demonstrate the lack of any meaningful genetic relationship between Maykop (including Steppe Maykop, which shows an unusual eastern influence) and Yamnaya using a range of methods. But, judging by their conclusion, in which they still seem to want to see Maykop as the said Indo-Europeanizing agent in the Pontic-Caspian steppe, they're not exactly enthused by their own results. And they also make the following claim (emphasis is mine):

Based on PCA and ADMIXTURE plots we observe two distinct genetic clusters: one cluster falls with previously published ancient individuals from the West Eurasian steppe (hence termed ‘Steppe’), and the second clusters with present-day southern Caucasian populations and ancient Bronze Age individuals from today’s Armenia (henceforth called ‘Caucasus’), while a few individuals take on intermediate positions between the two. The stark distinction seen in our temporal transect is also visible in the Y-chromosome haplogroup distribution, with R1/R1b1 and Q1a2 types in the Steppe and L, J, and G2 types in the Caucasus cluster (Fig. 3A, Supplementary Data 1). In contrast, the mitochondrial haplogroup distribution is more diverse and almost identical in both groups (Fig. 3B, Supplementary Data 1).

I'd say that what they're almost suggesting there is that the Caucasus and Steppe clusters, hence also the Maykop and Yamnaya populations, shared significant maternal ancestry. If this were true, then perhaps it might mean that the Pontic-Caspian steppe was Indo-Europeanized via female-biased migrations from Maykop? Yes, perhaps, if this were true. However, it's not.

To be sure, Yamnaya does show a close genome-wide genetic relationship with an earlier group from the North Caucasus region: the so called Eneolithic steppe people. But they can't be linked to Maykop or even the roughly contemporaneous nearby Eneolithic Caucasus population, and seem to have vanished, at least as a coherent genetic unit, just as Maykop got going. Wang et al. managed to sequence three Eneolithic steppe samples with the following mtDNA haplogroups: H2, I3a and T2a1b.

H2 is too broad a haplogroup to bother with, but here are the results for I3a and T2a1b from the recently launched AmtDB, the first database of ancient human mitochondrial genomes (see here).


In a database of 1,131 ancient samples, I3a shows up in just five individuals, all of them associated with Yamnaya-related archeological cultures and populations: Poltavka (BARu), Unetice (UNC), Corded Ware (CWC), and Bell Beaker (BBC). Similarly, T2a1b shows up in just four individuals, all of them associated with Corded Ware (CWC) and Bell Beaker-derived Bronze Age Britons (BABI). And if I go back a step to T2a1, then the list reveals two Yamnaya individuals from what is now Kalmykia, Russia.

Thus, using just two mtDNA haplotypes I'm able to corroborate the results from genome-wide genetic data showing a close relationship between Eneolithic steppe and Yamnaya. So like I said, useful stuff.

This obviously begs the question: what does the AmtDB reveal about Maykop mtDNA haplotypes, especially in the context of the genetic relationship, or rather lack of, between Yamnaya and Maykop? Yep, again, the AmtDB basically corroborates the results from genome-wide genetic data.

But don't take my word for it. Stick the currently available Maykop mtDNA haplogroups into the AmtDB and see what happens (for your convenience I've made a list available here). Considering the close geographic and temporal proximity of Maykop to Yamnaya, you won't see an overly high sharing rate with Yamnaya and closely related populations. Moreover, Maykop shows several haplogroups that appear highly unusual in the context of the Eneolithic and Bronze Age steppe mtDNA gene pool, and, instead, link its maternal ancestry to those of the early European farmers, West Asians or even Central Asians, such as HV, M52, U1b, U7b and X2f.

See also...

Steppe Maykop: a buffer zone?

Yamnaya isn't from Iran just like R1a isn't from India

Big deal of 2016: the territory of present-day Iran cannot be the Indo-European homeland

Wednesday, October 24, 2018

Steppe Maykop: a buffer zone?


Unfortunately, the ancient data from the Wang et al. preprint still haven't been released online. As I've already pointed out many times, the manuscript conclusion looks horribly contrived (for instance, see here), but the data are awesome, and most of the preprint is quite solid.


One thing that I'd really like to do is to compare in detail each of the ancient populations from the preprint to groups of present-day and ancient speakers of Indo-European and Caucasian languages. What's the bet that, by and large, Eneolithic steppe will show strong links to Indo-Europeans, while Eneolithic Caucasus and Maykop to Caucasians?

But pending the release of the data, all I can do is look at what the authors have done with it.

Intriguingly, their analyses suggest that the Eneolithic steppe genotype may have vanished from the steppes abutting the Caucasus by at least 3500 BC. It seems to have been replaced there by a more heterogeneous gene pool, with both more easterly and southerly genetic affinities, associated with the Steppe Maykop archeological culture.

So who were the Steppe Maykop people and why did they show up, rather suddenly, in the North Caucasus steppes to seemingly clear out the Eneolithic steppe population from the region? I have a theory about that.

Both archeological and ancient DNA data show that the North Caucasus was being colonized by groups from Transcaucasia during the Eneolithic. But apparently this wasn't an entirely smooth and safe process, because these southern settlers were forced to build elaborate fortifications to keep the natives at bay. Indeed, at the site of Meshoko, in the Northwest Caucasus, there is evidence of such a fort being overrun and its community replaced, probably by a nearby indigenous group (see here).

On the other hand, during the Bronze Age Maykop period, the relations between the settlers from the south and the steppe peoples were apparently much more peaceful. So much so, in fact, that Maykop settlements weren't fortified. However, this was also the period when the North Caucasus steppes were home to the Steppe Maykop people.

So here's my theory: either by chance or design, Steppe Maykop territory was a buffer zone between Maykop and the potentially aggressive natives of the steppes to the north. I'm not necessarily suggesting that the Steppe Maykop people were foreign mercenaries hired by Maykop chiefs, but, in any case, they may have benefited economically in a variety of ways by keeping Maykop settlements safe.

Around 3000 BC, both Maykop and Steppe Maykop disappeared. The latter was replaced by the Yamnaya culture. I don't know much about this process. It may have been mostly driven by environmental impacts from climate change. But the fact that the Steppe Maykop population didn't contribute much, if any, ancestry to the Yamnaya people in the region suggests to me that it was a hostile takeover by Yamnaya.

Interestingly, the spread of Yamnaya into the North Caucasus steppes saw the return of the Eneolithic steppe genotype to the region, albeit in a modified form, with admixture from Middle Neolithic European farmers (see here).

See also...

A potentially violent end to the Kura-Araxes Culture (Alizadeh et al. 2018)

Monday, October 22, 2018

Y-haplogroup P1 in Pleistocene Siberia (Sikora et al. 2018 preprint)


Over at bioRxiv at this LINK. Below is the abstract, emphasis is mine. Two of the (unrelated) males from Yana RHS belong to Y-haplogroup P1 and mitochondrial haplogroup U2. Note that P1 is ancestral to Y-haplogroups Q and R.

Far northeastern Siberia has been occupied by humans for more than 40 thousand years. Yet, owing to a scarcity of early archaeological sites and human remains, its population history and relationship to ancient and modern populations across Eurasia and the Americas are poorly understood. Here, we report 34 ancient genome sequences, including two from fragmented milk teeth found at the ~31.6 thousand-year-old (kya) Yana RHS site, the earliest and northernmost Pleistocene human remains found. These genomes reveal complex patterns of past population admixture and replacement events throughout northeastern Siberia, with evidence for at least three large-scale human migrations into the region. The first inhabitants, a previously unknown population of "Ancient North Siberians" (ANS), represented by Yana RHS, diverged ~38 kya from Western Eurasians, soon after the latter split from East Asians. Between 20 and 11 kya, the ANS population was largely replaced by peoples with ancestry from East Asia, giving rise to ancestral Native Americans and "Ancient Paleosiberians" (AP), represented by a 9.8 kya skeleton from Kolyma River. AP are closely related to the Siberian ancestors of Native Americans, and ancestral to contemporary communities such as Koryaks and Itelmen. Paleoclimatic modelling shows evidence for a refuge during the last glacial maximum (LGM) in southeastern Beringia, suggesting Beringia as a possible location for the admixture forming both ancestral Native Americans and AP. Between 11 and 4 kya, AP were in turn largely replaced by another group of peoples with ancestry from East Asia, the "Neosiberians" from which many contemporary Siberians derive. We detect additional gene flow events in both directions across the Bering Strait during this time, influencing the genetic composition of Inuit, as well as Na Dene-speaking Northern Native Americans, whose Siberian-related ancestry components is closely related to AP. Our analyses reveal that the population history of northeastern Siberia was highly dynamic, starting in the Late Pleistocene and continuing well into the Late Holocene. The pattern observed in northeastern Siberia, with earlier, once widespread populations being replaced by distinct peoples, seems to have taken place across northern Eurasia, as far west as Scandinavia.

Sikora et al., The population history of northeastern Siberia since the Pleistocene, bioRxiv, posted October 22, 2018, doi: https://doi.org/10.1101/448829

See also...

Ust'-Ishim belongs to K-M526

Wednesday, October 17, 2018

A closer look at a couple of ancients from Hellenistic Anatolia


Not sure if anyone's mentioned or noticed this already, but the two currently available genomes from Hellenistic Anatolia (samples MA2197 and MA2198 from Damgaard et al. 2018) pack an impressive amount of steppe ancestry. Moreover, one of these individuals also shows obvious admixture from Central Asia.

This isn't particularly surprising, considering the well attested presence of Galatian Celts from deep in Europe and Cimmerians from the Eurasian steppe in Iron Age Anatolia. But it's worthy of note, because it's yet another example of ancient DNA correlating very strongly with archaeological data and historical records. Below are a couple qpAdm models for each of the two aforementioned Anatolians:

Anatolia_IA_MA2197
Anatolia_MLBA 0.429±0.073
Beaker_Hungary 0.571±0.073
chisq: 4.073
tail prob: 0.967727
Full output

Anatolia_IA_MA2197
Anatolia_MLBA 0.431±0.085
Hallstatt_Bylany 0.569±0.085
chisq: 4.056
tail prob: 0.968241
Full output

...

Anatolia_IA_MA2198
Anatolia_MLBA 0.469±0.037
Kangju 0.531±0.037
chisq: 12.091
tail prob: 0.356839
Full output

Anatolia_IA_MA2198
Anatolia_IA_MA2197 0.588±0.165
Cimmerian_Moldova 0.412±0.165
chisq: 11.657
tail prob: 0.390007
Full output

Hence, MA2197 can be modeled very successfully with more than 50% ancestry from a source closely related to the Bell Beakers from the Carpathian Basin and the presumably Celtic-speaking Hallstatt population of what is now Czechia. This almost certainly proves to me that MA2197 is largely of Galatian Celtic stock. The models for MA2198 aren't quite as statistically sound, but they still work, and indeed suggest that this individual might be in large part of Cimmerian origin.

See also...

Focus on Hittite Anatolia

Cimmerians, Scythians and Sarmatians came from...

Central Asian admixture in Hallstatt Celts

Monday, October 15, 2018

ASHG 2018 open thread


The American Society of Human Genetics (ASHG) annual meetings kicks off tomorrow in San Diego. Feel free to post anything near and far related to this event in the comment thread below.

You can explore this year's offerings via the online planner/abstract search located HERE. See anything really interesting? Here's what I found after a quick search using the term "ancient". Hopefully someone tweets from the South Asian talk.

Mount Lebanon provides an opportunity to study DNA from the ancient Near East

Reconstructing the peopling of old world south Asia: From modern to ancient genomes

Tracing the evolution of pigmentation-associated variants in Europe

Intriguingly, the Mount Lebanon abstract says this:

In addition, we found steppe-like ancestry in the Roman Period individuals which we have previously detected in present-day Lebanese but not in Bronze Age individuals. This supports our previous proposition that the steppe ancestry penetrated the region more than 2,000 years ago, and genetic continuity in Lebanon is substantial.

So what are we dealing with here exactly: admixture from the Hittites, Mittani, and/or Romans? Who does the Global25 point to?

See also...

The South Asian cline that no longer exists

Sunday, October 7, 2018

The resistance crumbles


Over the years some scientists from the Estonian Biocentre have been among the staunchest opponents of the idea that Bronze Age pastoralists originating in the steppes of Eastern Europe had a significant genetic and linguistic impact on South Asia (for instance, see here).

But this week they put out a review paper titled The genetic makings of South Asia [LINK] featuring the figure below. It's a nice visualization of the current state of understanding of the peopling of South Asia, and does acknowledge the major role that the said steppe pastoralists had in this process.


However, there's not a single mention of Y-haplogroup R1a in the review. This is surprising, considering the once common, but now no longer valid, claims that this paternal marker may have originated in India. I guess the grieving process will continue for a little longer for some.

My long-held opinion about the claims that R1a was native to India, Iran, Central Asia, or, indeed, anywhere but its actual homeland, which is certainly Eastern Europe, can be summarized as such: LOL!

See also...

Wednesday, October 3, 2018

Cimmerians, Scythians and Sarmatians came from...


Apparently they all came from the eastern Pontic-Caspian steppe. There's a new paper about that at Science Advances (see here). Below is the abstract, emphasis is mine:

For millennia, the Pontic-Caspian steppe was a connector between the Eurasian steppe and Europe. In this scene, multidirectional and sequential movements of different populations may have occurred, including those of the Eurasian steppe nomads. We sequenced 35 genomes (low to medium coverage) of Bronze Age individuals (Srubnaya-Alakulskaya) and Iron Age nomads (Cimmerians, Scythians, and Sarmatians) that represent four distinct cultural entities corresponding to the chronological sequence of cultural complexes in the region. Our results suggest that, despite genetic links among these peoples, no group can be considered a direct ancestor of the subsequent group. The nomadic populations were heterogeneous and carried genetic affinities with populations from several other regions including the Far East and the southern Urals. We found evidence of a stable shared genetic signature, making the eastern Pontic-Caspian steppe a likely source of western nomadic groups.

Krzewinska et al., Ancient genomes suggest the eastern Pontic-Caspian steppe as the source of western Iron Age nomads, Science Advances, 03 Oct 2018: Vol. 4, no. 10, eaat4457, DOI: 10.1126/sciadv.aat4457

Update 04/10/2018: Twenty four of the ancient nomad samples made it into the Global25 datasheets. Look for the following population codes: Cimmerian_Moldova, Sarmatian_Urals, Scythian_Moldova, Scythian_Ukraine and Srubnaya-Alakulskaya_MLBA. Feel free to put them through their paces and share the results with us in the comments below.

Global 25 datasheet

Global 25 datasheet (scaled)

Global 25 pop averages

Global 25 pop averages (scaled)

See also...

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Monday, October 1, 2018

Greeks in a Longobard cemetery


I designed a new Principal Component Analysis (PCA) to help me test the fine scale genetic affinities of post-Bronze Age ancient samples from Southern Europe and surrounds. Below is a version of this PCA with a selection of the most Southern European-related ancients from this year's Amorim et al. and Veeramah et al. papers (for background reading, see the posts and comments here and here). The relevant datasheet is available here.
A number of people in the comments at this blog and elsewhere were especially curious about the potential genetic origins of the three most Near Eastern-shifted individuals from the Amorim et al. dataset: CL25, CL30 and CL38. Judging from my new PCA, it seems likely to me that this trio came to North Italy from the pre-Slavic invasions Aegean region. In other words, I'd say they're probably Roman era Greeks or their descendants, who, unlike most present-day Greeks, don't harbor any Slavic ancestry. That's because they cluster very strongly with present-day Greeks from Crete, and also more or less sit on a cline running from present-day mainland Greeks to Cypriots.

See also...

Celtic vs Germanic Europe

Wednesday, September 26, 2018

The Hallstatt effect (?)


Just to see what would happen, I ran a subset of the highest coverage Bronze Age samples from what are now Britain and Ireland in my new Celtic vs Germanic Principal Component Analysis (PCA). Look for the Britain_&_Ireland_BA cluster. The relevant datasheet is available here.


Perhaps it's not a coincidence that the likely Celtic-speaking Iron Age individuals from present-day England (labeled England_IA) are positioned between these older British and Irish samples and the two ancients from Iron Age burials in present-day Bylany, Czechia, associated with the Hallstatt culture (marked with black stars). That's because the Hallstatt people are generally considered to have been the earliest speakers of Celtic languages.

Hence, what the PCA might be showing is a genetic shift in the British and Irish Isles caused by the arrival of Hallstatt Celts in Northwestern Europe.

Interestingly, the present-day English samples appear to be a mixture of Britain_&_Ireland_BA, England_IA and England_Anglo-Saxon. However, a subset of these samples is also heavily shifted "east" towards one of the Hallstatt individuals and present-day Dutch, suggesting that they harbor extra admixture from continental Europe.

This isn't easy to make out on my plot, because of the clutter, but I can assure you that it's true. Keep in mind that you can plug the datasheet into the PAST program (freely available here) to have a much closer look at the PCA and even change the color coding.

To check whether England_IA can be modeled as a mixture of Britain_&_Ireland_BA and Hallstatt with formal methods, I ran an analysis with the qpAdm software using all of the publicly available Bronze Age samples from present-day Britain and Ireland. The standard errors are high, likely because Britain_&_Ireland_BA and Hallstatt are closely related, but, overall, we can probably say that the model does limp across the line.

England_IA
Britain_&_Ireland_BA 0.555±0.172
Hallstatt 0.445±0.172
chisq 18.513
tail prob 0.100973
Full output

However, the really important thing about this output is that England_IA cannot be modeled as simply Britain_&_Ireland_BA (the chisq and tail prob are way off). Thus, even though the Hallstatt samples from Bylany don't appear to be ideal proxies for the admixture in England_IA that is lacking in Britain_&_Ireland_BA, the signal they produce does suggest that a closely related population arrived in the British Isles during or after the Bronze Age to give rise to England_IA.

See also...

Celtic vs Germanic Europe

Central Asian admixture in Hallstatt Celts

Tuesday, September 25, 2018

AmtDB: an interactive ancient human mitogenome database


A very useful resource called AmtDB has just come online. For background info, check out the relevant paper by Ehler et al. here. Below is the paper abstract:

Ancient mitochondrial DNA is used for tracing human past demographic events due to its population-level variability. The number of published ancient mitochondrial genomes has increased in recent years, alongside with the development of high-throughput sequencing and capture enrichment methods. Here, we present AmtDB, the first database of ancient human mitochondrial genomes. Release version contains 1107 hand-curated ancient samples, freely accessible for download, together with the individual descriptors, including geographic location, radiocarbon dating, and archaeological culture affiliation. The database also features an interactive map for sample location visualization. AmtDB is a key platform for ancient population genetic studies and is available at https://amtdb.org.

To give an example of how this thing works, I'll search for a very specific mitochondrial (mtDNA) haplogroup, H6a1b, which was recorded, perhaps unexpectedly, in a sample from Hittite era Anatolia (individual MA2208 from Damgaard et al. 2018). I say perhaps unexpectedly, because it's a marker that is today, by and large, restricted to Northern Europe. Here are the results...


Interestingly, H6a1b only pops up in Copper and Bronze Age individuals from what are now Czechia, Great Britain, Poland and Russia, with not a single instance from the Near East. Moreover, the oldest sample on the list is from an Yamnaya culture burial in Samara, Russia. Thus, if the presence of this marker in the Hittite sample isn't due to contamination or poor quality sequencing, then it's likely that some Hittites belonged to mtDNA haplogroups that arrived in Anatolia from the steppes of what is now Russia.

See also...

Focus on Hittite Anatolia

Saturday, September 22, 2018

Corded Ware people =/= Proto-Uralics (Tambets et al. 2018)


A new paper on the genetic structure of Uralic-speaking populations has appeared at Genome Biology (see here). It looks to me like the prelude to a forthcoming paleogenetics paper on the same topic that was discussed in the Estonian media recently (see here). Although not exactly ground breaking (because it basically argues what I've been saying at this blog for years, like here and here), it's a very nice effort all round and must be read by anyone with an interest in this topic. From the paper, emphasis is mine:

Background The genetic origins of Uralic speakers from across a vast territory in the temperate zone of North Eurasia have remained elusive. Previous studies have shown contrasting proportions of Eastern and Western Eurasian ancestry in their mitochondrial and Y chromosomal gene pools. While the maternal lineages reflect by and large the geographic background of a given Uralic-speaking population, the frequency of Y chromosomes of Eastern Eurasian origin is distinctively high among European Uralic speakers. The autosomal variation of Uralic speakers, however, has not yet been studied comprehensively.

Results: Here, we present a genome-wide analysis of 15 Uralic-speaking populations which cover all main groups of the linguistic family. We show that contemporary Uralic speakers are genetically very similar to their local geographical neighbours. However, when studying relationships among geographically distant populations, we find that most of the Uralic speakers and some of their neighbours share a genetic component of possibly Siberian origin. Additionally, we show that most Uralic speakers share significantly more genomic segments identity-by-descent with each other than with geographically equidistant speakers of other languages. We find that correlated genome-wide genetic and lexical distances among Uralic speakers suggest co-dispersion of genes and languages. Yet, we do not find long-range genetic ties between Estonians and Hungarians with their linguistic sisters that would distinguish them from their non-Uralic-speaking neighbours.

Conclusions: We show that most Uralic speakers share a distinct ancestry component of likely Siberian origin, which suggests that the spread of Uralic languages involved at least some demic component.

...

Recent aDNA studies have shown that extant European populations draw ancestry form three main migration waves during the Upper Palaeolithic, the Neolithic and Early Bronze Age [2, 3, 45]. The more detailed reconstructions concerning NE Europe up to the Corded Ware culture agree broadly with this scenario and reveal regional differences [65–67]. However, to explain the demographic history of extant NE European populations, we need to invoke a novel genetic component in Europe—the Siberian. The geographic distribution of the main part of this component is likely associated with the spread of Uralic speakers but gene flow from Siberian sources in historic and modern Uralic speakers has been more complex, as revealed also by a recent study of ancient DNA from Fennoscandia and Northwest Russia [68]. Thus, the Siberian component we introduce here is not the perfect but still the current best candidate for the genetic counterpart in the spread of Uralic languages.


Citation...

Tambets et al., Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations, Genome Biology, (2018) 19:139 https://doi.org/10.1186/s13059-018-1522-1

See also...

Indo-European crackpottery

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Genetic and linguistic structure across space and time in Northern Europe

Friday, September 21, 2018

Dzudzuana Ice Age foragers: a different type of Caucasus hunter-gatherer (Lazaridis et al. 2018 preprint)


Over at bioRxiv at this LINK. Below is the abstract. Emphasis is mine.

The earliest ancient DNA data of modern humans from Europe dates to ~40 thousand years ago, but that from the Caucasus and the Near East to only ~14 thousand years ago, from populations who lived long after the Last Glacial Maximum (LGM) ~26.5-19 thousand years ago. To address this imbalance and to better understand the relationship of Europeans and Near Easterners, we report genome-wide data from two ~26 thousand year old individuals from Dzudzuana Cave in Georgia in the Caucasus from around the beginning of the LGM. Surprisingly, the Dzudzuana population was more closely related to early agriculturalists from western Anatolia ~8 thousand years ago than to the hunter-gatherers of the Caucasus from the same region of western Georgia of ~13-10 thousand years ago. Most of the Dzudzuana population's ancestry was deeply related to the post-glacial western European hunter-gatherers of the 'Villabruna cluster', but it also had ancestry from a lineage that had separated from the great majority of non-African populations before they separated from each other, proving that such 'Basal Eurasians' were present in West Eurasia twice as early as previously recorded. We document major population turnover in the Near East after the time of Dzudzuana, showing that the highly differentiated Holocene populations of the region were formed by 'Ancient North Eurasian' admixture into the Caucasus and Iran and North African admixture into the Natufians of the Levant. We finally show that the Dzudzuana population contributed the majority of the ancestry of post-Ice Age people in the Near East, North Africa, and even parts of Europe, thereby becoming the largest single contributor of ancestry of all present-day West Eurasians.

Lazaridis et al., Paleolithic DNA from the Caucasus reveals core of West Eurasian ancestry, bioRxiv, posted September 21, 2018, doi: https://doi.org/10.1101/423079

See also...

Villabruna cluster =/= Near Eastern migrants

Thursday, September 20, 2018

Early Anatolian farmers were overwhelmingly of local hunter-gatherer origin (Feldman et al. 2018 preprint)


Over at bioRxiv at this LINK. The dataset in this preprint includes just one Anatolian hunter-gatherer, but that's enough to make the point that in Anatolia, unlike in Europe, there was very strong genetic continuity between the local foragers and earliest farmers. His Y-chromosome haplogroup is an interesting one: C1a2, which has been recorded in European remains from the Upper Paleolithic. Below is the abstract and a pertinent quote. I think this preprint basically confirms what I argued about the origin of the so called Villabruna hunter-gatherer clade back in 2016 (see here). Emphasis is mine.

Anatolia was home to some of the earliest farming communities. It has been long debated whether a migration of farming groups introduced agriculture to central Anatolia. Here, we report the first genome-wide data from a 15,000 year-old Anatolian hunter-gatherer and from seven Anatolian and Levantine early farmers. We find high genetic continuity between the hunter-gatherer and early farmers of Anatolia and detect two distinct incoming ancestries: an early Iranian/Caucasus related one and a later one linked to the ancient Levant. Finally, we observe a genetic link between southern Europe and the Near East predating 15,000 years ago that extends to central Europe during the post-last-glacial maximum period. Our results suggest a limited role of human migration in the emergence of agriculture in central Anatolia.

...

Among the Later European HG, recently reported Mesolithic hunter-gatherers from the Balkan peninsula, which geographically connects Anatolia and central Europe (‘Iron Gates HG’) [18], are genetically closer to AHG when compared to all the other European hunter-gatherers, as shown in the significantly positive statistic D(Iron_Gates_HG, European hunter-gatherers; AHG, Mbuti/Altai). Iron Gates HG are followed by Epigravettian and Mesolithic individuals from Italy and France (Villabruna [14] and Ranchot88 respectively [17]) as the next two European hunter-gatherers genetically closest to AHG [20] (Fig. 3A and data table S5). Iron Gates HG have been suggested to be genetically intermediate between WHG and eastern European hunter-gatherers (EHG) with an additional unknown ancestral component [18]. We find that Iron Gates HG can be modeled as a three-way mixture of Near-Eastern hunter-gatherers (25.8 ± 5.0 % AHG or 11.1 ± 2.2 % Natufian), WHG (62.9 ± 7.4 % or 78.0 ± 4.6 % respectively) and EHG (11.3 ± 3.3 % or 10.9 ± 3 % respectively); (tables S4 and S9). The affinity detected by the above D-statistic can be explained by gene flow from Near-Eastern hunter-gatherers into the ancestors of Iron Gates or by a gene flow from a population ancestral to Iron Gates into the Near-Eastern hunter-gatherers as well as by a combination of both. To distinguish the direction of the gene flow, we examined the Basal Eurasian ancestry component (α), which is prevalent in the Near East [6] but undetectable in European hunter-gatherers [17]. Following a published approach [6], we estimated α to be 24.8 ± 5.5 % in AHG and 38.5 ± 5.0 % in Natufians (Fig. 3B, table S10), consistent with previous estimates for the latter [6]. Under the model of unidirectional gene flow from Anatolia to Europe, 6.4 % is expected for α of Iron Gates by calculating (% AHG in Iron Gates HG) × (α in AHG). However, Iron Gates can be modeled without any Basal Eurasian ancestry or with a non-significant proportion of 1.6 ± 2.8 % (Fig. 3B, table S10), suggesting that unidirectional gene flow from the Near East to Europe alone is insufficient to explain the extra affinity between the Iron Gates HG and the Near-Eastern hunter-gatherers. Thus, it is plausible to assume that prior to 15,000 years ago there was either a bidirectional gene flow between populations ancestral to Southeastern Europeans of the early Holocene and Anatolians of the late glacial or a dispersal of Southeastern Europeans into the Near East. Presumably, this Southeastern European ancestral population later spread into central Europe during the post-last-glacial maximum (LGM) period, resulting in the observed late Pleistocene genetic affinity between the Near East and Europe.

Feldman et al., Late Pleistocene human genome suggests a local origin for the first farmers of central Anatolia, biRxiv, posted September 20, 2018, doi: https://doi.org/10.1101/422295

Sunday, September 16, 2018

Celtic vs Germanic Europe


I have a feeling that ancient DNA from post-Bronze Age Northwestern Europe will be coming thick and fast from now on. To get the most out of such data I've designed a new Principal Component Analysis (PCA) that does a better job of separating the Celtic- and Germanic-speaking populations of Europe than my previous efforts of this sort (see here and here). Below are two different versions of the same PCA. The relevant datasheet is available here.


And here's a Discrimination Analysis (LDA) plot based on the 25 principal components. It further differentiates many of the populations along the east > west cline of genetic diversity.


The difference between the Germanic Anglo-Saxons and the Celtic and Roman Britons of what is now eastern England is obvious. The Anglo-Saxons could pass for Scandinavians, while the Celts and Romans both cluster between the Irish and French. This makes good sense, and is exactly what I was looking for. It's also interesting to see the Hallstatt Celts from Bylany, Czechia, clustering with the Belgians. I'll add this PCA to the Eurogenes store if there's enough interest from the community.

Wednesday, September 12, 2018

Avars and Longobards


Most of the "barbarians" from today's Amorim et al. paper have made it into the Global25 datasheets. Look for the samples with Collegno and Szolad in their labels. Same links as always...

Global 25 datasheet (scaled)

Global 25 datasheet

Global 25 pop averages (scaled)

Global 25 pop averages

Here's my usual Principal Component Analysis (PCA) of West Eurasian variation with the same individuals. As seen in the paper, the two females from Avar burials are very European indeed, with no hints of any recent Asian ancestry. The relevant datasheet is available here.


And this is my Global25-derived North European PCA featuring a subset of these samples that plotted firmly with present-day populations from north of the Alps, Balkans and Pyrenees. The aforementioned Avars (red dots) are sitting within the Polish cluster. The relevant datasheet is available here.


See also...

Greeks in a Longobard cemetery

First real foray into Migration Period Europe: the Gepid, Roman, Ostrogoth and others

Tuesday, September 11, 2018

Blast from the past: Yamnaya prediction from 2016


I wonder what's holding up the publication of the Wang et al. "Greater Caucasus" preprint? It was released back in May at the bioRxiv (see here). On a related note, I was looking back at some of the stuff that I wrote about the origin of the Yamnaya people (aka Steppe_EMBA), and found this...

But here's my prediction: Steppe_EMBA only has 10-15% admixture from the post-Mesolithic Near East not including the North Caucasus, and basically all of this comes via female mediated gene flow from farming communities in the Caucasus and perhaps present-day Ukraine.

The relevant blog post from 2016 is here. I totally forgot that I made such a bold prediction. But it actually has a very good chance now of being proven correct, more or less.

This, however, depends on the precise origin of the Yamnaya-like Eneolithic populations of the southernmost parts of the Pontic-Caspian steppe. But, considering the data in Wang et al., I think the possibility that they date back to the Pottery Neolithic period, and are thus indigenous to the region, looks quite high.

About a year later I made a prediction about the genetic structure of the Maykop people, and was basically proven right by Wang et al. (see here). Admittedly, my jaw dropped when I saw how the Steppe Maykop individuals came out in the preprint, with their Botai-like ancestry that is missing in all Yamnaya populations sampled to date. But it was an interesting outcome and nice to be surprised by ancient DNA yet again.

See also...

Genetic borders are usually linguistic borders too

Ahead of the pack

Indo-European crackpottery

Wednesday, September 5, 2018

ISBA 2018 abstracts


The ISBA 2018 conference is in a couple of weeks and the abstract book is now available here. Below are a few examples of what's on offer this year. Admittedly, the Scythian abstract looks a bit weird to me, because we know for a fact that the Scythians who lived in the Pontic-Caspian steppe harbored Siberian genome-wide and maternal admixture (see here and here). The abstract about the horses and mules looks like it's from the major horse paper that I blogged about a few days ago (see here). Emphasis is mine...

Genetic continuity in the western Eurasian Steppe broken not due to Scythian dominance, but rather at the transition to the Chernyakhov culture (Ostrogoths)

Jarve et al.

The long-held archaeological view sees the Early Iron Age nomadic Scythians expanding west from their Altai region homeland across the Eurasian Steppe until they reached the Ponto-Caspian region north of the Black and Caspian Seas by around 2,900 BP. However, the migration theory has not found support from ancient DNA evidence, and it is still unclear how much of the Scythian dominance in the Eurasian Steppe was due to movements of people and how much reflected cultural diffusion and elite dominance. We present new whole-genome results of 31 ancient Western and Eastern Scythians as well as samples pre- and postdating them that allow us to set the Scythians in a temporal context by comparing the Western Scythians to samples before and after within the Ponto-Caspian region. We detect no significant contribution of the Scythians to the Early Iron Age Ponto-Caspian gene pool, inferring instead a genetic continuity in the western Eurasian Steppe that persisted from at least 4,800–4,400 cal BP to 2,700–2,100 cal BP (based on our radiocarbon dated samples), i.e. from the Yamnaya through the Scythian period.

However, the transition from the Scythian to the Chernyakhov culture between 2,100 and 1,700 cal BP does mark a shift in the Ponto-Caspian genetic landscape, with various analyses showing that Chernyakhov culture samples share more drift and derived alleles with Bronze/Iron Age and modern Europeans, while the Scythians position outside modern European variation. Our results agree well with the Ostrogothic origins of the Chernyakhov culture and support the hypothesis that the Scythian dominance was cultural rather than achieved through population replacement.

...

Unveiling early horse domestication and mule production with ancient genome-scale data

Fages et al.

Despite being one of the last large herbivores to be domesticated, the horse has deeply transformed human civilizations. It provided not only important primary domestication products including both meat and milk, but also invaluable secondary products, such as fast transportation, which impacted patterns of human movements and facilitated the spread of vast cultural and political units across the Old World. The steps underpinning early horse domestication are, however, difficult to track in the archaeological record, especially due to (1) the relative scarcity of horse bone assemblages until the Neolithic and Bronze Age transition, and (2) the absence of clear patterns of size differentiation prior to the Iron Age. Some of the more recent steps accompanying horse domestication, and in particular how it was transformed to fit a range of utilizations in different human groups, are also poorly documented. One such step pertains to the development of mules, and other kinds of F1-hybrids, which are difficult to identify on fragmentary remains using morphology alone. Within the course of the ERC PEGASUS project, we have generated genome-scale sequence information from hundreds of equine archaeological remains spread across Eurasia and spanning the last ~40,000 years. These data helped us test the extent to which candidate domestication centres in Central Asia and Europe contributed to the genetic makeup of the modern domestic horse and propose a minimal time boundary for the earliest utilization of mules by mankind.

...

The genetic history of the Iberian Peninsula over the last 8000 years

Olalde et al.

The Iberian Peninsula, lying on the southwestern corner of Europe, provides an excellent opportunity to assess the final impact of population movements entering the continent from the east and to study prehistoric and historic connections with North Africa. Previous studies have addressed the population history of Iberia using ancient genomes, but the final steps leading to the formation of the modern Iberian gene pool during the last 4000 years remain largely unexplored. Here we report genome-wide data from 153 ancient individuals from Iberia, more than doubling the number of available genomes from this region and providing the most comprehensive genetic transect of any region in the world during the last 8000 years. We find that Mesolithic hunter-gatherers dated to the last centuries before the arrival of farmers showed an increased genetic affinity to central European hunter-gatherers, as compared to earlier individuals. During the third millennium BCE, Iberia received newcomers from south and north. The presence of one individual with a North African origin in central Iberia demonstrates early sporadic contacts across the strait of Gibraltar. Beginning ~2500 BCE, the arrival of individuals with steppe-related ancestry had a rapid and widespread genetic impact, with Bronze Age populations deriving ~40% of their autosomal ancestry and 100% of their Y-chromosomes from these migrants. During the later Iron Age, the first genome-wide data from ancient non-Indo-European speakers showed that they were similar to contemporaneous Indo-European speakers and derived most of their ancestry from the earlier Bronze Age substratum. With the exception of Basques, who remain broadly similar to Iron Age populations, during the last 2500 years Iberian populations were affected by additional gene-flow from the Central/Eastern Mediterranean region, probably associated to the Roman conquest, and from North Africa during the Moorish conquest but also in earlier periods, probably related to the Phoenician-Punic colonization of Southern Iberia.

See also...

How relevant is Arslantepe to the PIE homeland debate?

Tuesday, September 4, 2018

Viking Age diversity


Four of the ancient Scandinavians from the recent Krzewinska et al. paper on the Viking Age town of Sigtuna made it into my Global25 and North Europe Principal Component Analyses (PCA). Click on the images below to view the hi-res versions of the plots. The relevant datasheets are available here and here. I've also updated all of the main Global25 datasheets with these samples. See here and here.


They cover a lot of ground between them, don't they? Sigtuna_84005 probably has ancestry from what is now Finland, because he's pulling sharply to the east and overlapping with a western Finn. He also belongs to Y-haplogroup I1a1b3 or I-Z74, which is very common nowadays in western Finland.

The fact that Sigtuna_grt036 is overlapping strongly with Germans suggests that he has ancestry from the southern Baltic region, and indeed his Y-hg I2a2 gels rather nicely with this idea. I don't know what to make of Sigtuna_grt035's occidental affinities, but his Y-hg G2a2 is also somewhat unusual for the Baltic region. Interestingly, Sigtuna_stg021 is a female and the only really obvious Scandinavian in this group, but that might be a coincidence.

As far as I know, nothing suggests that any of these males were captives or slaves. So we must assume that they were either migrants or the recent descendants of migrants who settled in Sigtuna for one reason or another, and may even be the ancestors of the Swedes living in the region today.

See also...

Global25 workshop 3: genes vs geography in Northern Europe

Genetic and linguistic structure across space and time in Northern Europe

Modeling genetic ancestry with Davidski: step by step

Sunday, September 2, 2018

Major horse paper coming soon


Horse domestication is an important and controversial topic, in large part because it's intimately tied to the debate over the location of the Proto-Indo-European (PIE) homeland. Based on the currently available genetic and archaeological data, it seems likely that all modern domesticated horse breeds ultimately derive from the Pontic-Caspian steppe in Eastern Europe (see here and here).

In the interview linked to below (click on the image) horse expert Alan Outram reveals that a new paper will be published within months that will test this theory, and either confirm or debunk it.


Outram also talks about the colonization of Central Asia during the Middle Bronze Age by groups from the west associated with the Sintashta culture. He says that this was probably an aggressive affair, akin to the more recent European colonization of North America, that may have pushed the Botai people, who were the indigenous inhabitants of the Kazakh steppe, and their horses far to the east. This, he suggests, might explain why the Przewalski horse of Mongolia appears to be derived from the Botai horse.

See also...

The mystery of the Sintashta people

Focus on Hittite Anatolia

Friendly Yeniseian steppe pastoralists

Friday, August 31, 2018

Focus on Hittite Anatolia


I computed a series of D-statistics on most of the currently available ancient samples from Central Anatolia - dating from almost the Epipaleolithic (Boncuklu_N) to the Hittite era (Anatolia_MLBA) - to try and get a better idea of who the Indo-European-speaking Hittites may have been. The full output as well as details about the key ancient samples used in this analysis are available here. See anything interesting? The most noteworthy statistics, I suppose, are those listed below, because they're significant (Z≥3) and organized chronologically.


However, the thing to keep in mind in regards to D-statistics, and the very similar f4-statistics, when looking for signals of mixture is that they may or may not produce significant Z scores because of several reasons, such as the choice of the outgroup, the choice of the reference samples and the phylogenetic relationship between them, or even the type, quality and density of the data being used.

Perhaps ironically, the D-statistics above suggest that the Neolithic Central Anatolians (Boncuklu_N and Tepecik_Ciftlik_N) were more European-like than those from the Bronze Age, and I suspect that this is one of the main reasons why the idea of Eastern European admixture (from the Pontic-Caspian steppe and/or Balkans) in Hittites is currently being rejected by the geneticists working on the problem. But this dilemma is easy to explain away by the fact that the Neolithic samples carry much higher ratios of Anatolian Epipaleolithic hunter-gatherer admixture and also other types of ancestry shared with and/or closely related to European hunter-gatherers and early farmers.

In other words, I'd say that most of the statistics are being confounded by deep phylogenetic relationships, and thus aren't very useful for solving the Hittite problem. Interestingly, though, that relationship to Europe is reversed somewhat in the D-statistics involving Anatolia_EBA and Anatolia_MLBA, with the latter showing significantly higher affinity to Eastern European Hunter-Gatherers (EHG) and Minoans.

Thus, in my opinion, to get a more complete picture it's also useful to look for patterns in the statistics, even those that, strictly speaking, don't reach significance. One way to do that is with linear models. So here are a few linear models based on some of my D-statistics. The relevant datasheet is available here.


Arguably, the most striking thing about these models is the position at the top of the graphs of the ancient populations from Central Asia and what is now Iran, and the gradually lower position of populations with progressively less of this type of ancestry. The most plausible explanation for this phenomenon is post-Boncuklu_N gene flow into Central Anatolia from the east, possibly as a continuation of something that was happening already since the Epipaleolithic, but becoming more intense during the Neolithic revolution, probably as a result of rapid population growth in and around the Fertile Crescent.

Indeed, I strongly suspect that one of the main reasons why we've been hearing so much lately about Iran as a likely candidate for the Indo-European homeland is this strong eastern signal in Bronze Age Anatolian DNA. If so, then this is likely to be a misunderstanding, because there are better explanations for it than the Indo-Europeans, such as the Hattians and Hurrians.

Another rather obvious outcome in my graphs is the relatively stronger affinity between the Bronze Age Anatolians and the ancient populations from Eastern Europe, including, and especially, those from the Pontic-Caspian steppe, compared to Tepecik_Ciftlik_N. In fact, looking at the Anatolia_EBA vs Tepecik_Ciftlik_N graph, I'd say that steppe admixture was already seeping into Central Anatolia during the Early Bronze Age.

If so, this is an important point that should be taken into account when modeling the ancestry of the Hittite era Anatolians. That's because if Anatolia_EBA already harbored some steppe ancestry, then we'd be shooting ourselves in the proverbial foot if we were to use it as the supposedly unadmixed reference population to try and determine whether Anatolia_MLBA was partly of steppe origin. Hence, to model the ancestry of Anatolia_MLBA, at least in the context of possible migrations from the steppe to Anatolia during the Bronze Age, it might be more useful to use Tepecik_Ciftlik_N as the likely unadmixed reference population.

Let's try that with qpAdm, first on the whole Anatolia_MLBA set, and then on one individual labeled MA2203, who, as far as I can tell, shows an elevated level of steppe ancestry in several different types of analyses. I chose Yamnaya_Kalmykia as the potential mixture source from the steppe because it's likely to be the closest available population in my dataset to the Eneolithic groups of the southern region of the Pontic-Caspian steppe.

Anatolia_MLBA
Seh_Gabi_ChL 0.200±0.043
Tepecik_Ciftlik_N 0.659±0.033
Yamnaya_Kalmykia 0.141±0.022
chisq: 11.425
taildiff: 0.408404508
Full output

MA2203
Seh_Gabi_ChL 0.179±0.065
Tepecik_Ciftlik_N 0.622±0.049
Yamnaya_Kalmykia 0.199±0.036
chisq: 12.914
taildiff: 0.299003693
Full output

Please note, however, that these mixture models are based on f4-statisctics. So, obviously, they're going to be affected by the same factors as described above that affect f4-statistics. Hence, despite the seemingly statistically sound output, the steppe admixture that you see there might not actually be admixture from the steppe.

In fact, there's a good reason why I'm not shouting from the rooftops that I've just uncovered the presence of steppe ancestry in Bronze Age Anatolia, and thus confirmed the steppe or kurgan hypothesis positing that the Hittite and indeed Indo-European homeland was located in the Pontic-Caspian steppe. That's because I used a mixed bag of UDG-treated capture data and non-UDG-treated shotgun data. This is known to be a serious problem, which can skew the results of even the most robust analyses, and produce spurious statistics and Z scores.

Nevertheless, I'm reasonably confident that my findings will eventually be confirmed with more and higher quality data from ancient Anatolia. Let's wait and see.

See also...

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Saturday, August 25, 2018

Central Asian admixture in Hallstatt Celts


One of the two Hallstatt_Bylany samples from Damgaard et al. 2018, the individual labeled DA112 (2430±49 YBP), shows a subtle but clear signal of Central Asian ancestry. As far as I know, this hasn't yet been reported by anyone else, so I'll happily be the first to do it here. To initially explore this issue, here are a few D-stats comparing DA112 with DA111, the other Hallstatt_Bylany sample, in regards to their affinity to ancient Central Asian groups:


Thus, the two significant mixture signals (Z≥3) are produced by Dashti_Kozy_BA, from Bronze Age Tajikistan, and Botai, from Eneolithic Kazakhstan. But a few of the other populations, like Scythian_Pazyryk, are also close to a significant Z-score. Of course, this doesn't mean that the Dashti_Kozy_BA and/or Botai peoples migrated into the Bylany region, in what is now the Czech Republic. It simply shows that DA112 is different from DA111 in a statistically significant way due to ancestry closely related to Dashti_Kozy_BA and Botai.

To further explore this issue I ran a series of mixture models using the G25/nMonte method. Below is an example of one of the models that made good sense and also returned a fairly reasonable statistical fit. Hence, it appears to me that DA112 was in some part, perhaps mostly, of Scythian origin, with resulting minor admixture from Iron Age Central Asia.

Hallstatt_Bylany_DA112
Scythian_Hungary,80.6
Hallstatt_Bylany_DA111,16.2
Scythian_Pazyryk,3.2

[1] distance%=3.9953

Since it's extremely unlikely that DA112 was the only Hallstatt Celt with this type of genetic structure, then it's reasonable to conclude that at least some Hallstatt populations harbored Scythian ancestry. Admittedly, this isn't a very surprising conclusion considering the close contacts, as inferred from archaeological data, between the Hallstatt culture and various nomadic groups with assumed origins far to the east of Central Europe. In fact, here's what the Damgaard et al. supplement says about the Bylany burial site:

The anthropologist J. Chochol hypothesized that cremations were of individuals of the local population, whereas the skeletal remains represented immigrant nobility.

Examples of long-distance contact are present in the form of a horse harness (probably Kimery horizon), a mounted stone characteristic of the Carpathian Basin and Black Sea region in Grave 1, and a pin in Grave 18 with bird motifs analogous to those found in the Caucasus.

Nevertheless, it's nice to see archaeogenetics corroborate archeology on yet another issue. For those of you who would like to try running your own G25/nMonte mixture models of DA112, all of the necessary data are available at the links below. If you're new to this, a guide to modeling with the G25/nMonte is available here.

Global 25 datasheet (scaled)

Global 25 datasheet

Global 25 pop averages (scaled)

Global 25 pop averages

See also...

The Hallstatt effect (?)

First real foray into Migration Period Europe: the Gepid, Roman, Ostrogoth and others...

Friday, August 24, 2018

Global25 workshop 3: genes vs geography in Northern Europe


To produce the intra-North European Principal Components Analysis (PCA) plot below, download this datasheet, plug it into the PAST program, which is freely available here, then select all of the columns by clicking on the empty tab above the labels, and choose Multivariate > Ordination > Principal Components or Discriminant Analysis.


I'd say that the result more or less resembles a geographic map of Northern Europe. Of course, if you're in the possession of your own personal Global25 coordinates, you can add yourself to this plot to check whether your position matches your geographic origin.

Please keep in mind, however, that the vast majority (>90%) of your ancestry must be from north of the Alps, Balkans and Pyrenees to obtain a sensible outcome. Also please ensure that all of the columns in the datasheet are filled out correctly, including the group column, otherwise your position on the plot will be skewed.

See also...

Global25 workshop 1: that classic West Eurasian plot

Global25 workshop 2: intra-European variation

Global25 PAST-compatible datasheets

Modeling genetic ancestry with Davidski: step by step

Saturday, August 11, 2018

Indo-European crackpottery


I'm sometimes asked in the comments here and elsewhere what I think of Carlos Quiles and his Indo-European website (see here if you're game). Discussing this topic is a waste of time and effort, so I'm writing this blog post for future reference just in case this question comes up again. In all honesty, I think Carlos is a troll and his ramblings are of no value.


Now, many of you probably think that this is a very harsh appraisal. It certainly is, and it's unfortunate that I have to write a post like this, but let me assure you that Carlos has worked tirelessly over the last few years to deserve my scorn. Please let me explain...

Ancient DNA has revolutionized our understanding of prehistoric Europe, particularly in regards to one crucial, controversial and hotly debated topic: the origins of the Corded Ware Culture (CWC) and its people, who, during the Late Neolithic, came to dominate vast stretches of Europe all the way from the North Sea to the forest steppes of what is now western Russia.

Thanks to ancient DNA from burials associated with the CWC and those of preceding archaeological cultures, there is now a very strong academic consensus that the CWC was introduced into Northern Europe by migrants from the Pontic-Caspian (PC) steppe. It's also widely accepted that these migrants were rich in Y-chromosome haplogroup R1a and, in terms of genome-wide genetic ancestry, shared a very close relationship with the Yamnaya people who lived on the PC steppe at around the same time.

The question of the linguistic affinities of the CWC is still a controversial issue. It has to be, because assigning languages to long dead, illiterate cultures is a tricky business. But the generally accepted view that the CWC was the first Indo-European-speaking culture in Northern Europe has certainly gained strength thanks to the ancient DNA data, which has revealed an intimate genetic relationship between the CWC people and present-day Indo-European speakers of Northern and Eastern Europe and South Asia.

There are several recent papers freely available online on the CWC and its potential linguistic affinities authored by teams of well known geneticists, archaeologists and historical linguists, all basically saying the same thing. For instance...

Massive migration from the steppe is a source for Indo-European languages in Europe

Population genomics of Bronze Age Eurasia

The genetic prehistory of the Baltic Sea region

Extensive farming in Estonia started through a sex-biased migration from the steppe

Mitochondrial genomes reveal an east to west cline of steppe ancestry in Corded Ware populations

However, for some unknown reason, and against all odds, Carlos is adamant that this is a false narrative. As best as I can discern from his barely coherent scribbles, his argument is based on the following highly questionable, if not outright false, claims that:

- the subclades of R1a most commonly associated with the CWC, namely R1a-M417 and the derived R1a-Z645, are native to Northern Europe and did not arrive there with migrants from the PC steppe

- the CWC was introduced into Northern Europe via elite dominance by Indo-European-speaking males from the PC steppe belonging to Y-chromosome haplogroup R1b

- but the CWC was actually Uralic-speaking and had nothing at all to do with the eventual formation of the Baltic, Slavic and Germanic language groups in former CWC territories

- and the CWC people weren't really all that closely related to the Yamnaya people anyway, except maybe for some minor admixture via female gene flow, because obviously they didn't come from the PC steppe.

He doesn't appear to be at all concerned that reality is not on his side. What about the fact that there are no reliable instances in the already ample Northern European ancient DNA record of R1a-M417 or R1a-Z645 dating to earlier than the CWC expansion? Or that the earliest instance of R1a-M417 is in a sample from the PC steppe that shows a lot of Yamnaya-related genome-wide ancestry? But don't just take my word for it, take a look at this...

The Homeland: In the footprints of the early Indo-Europeans

Oh, wait, that map is from the Copenhagen group of academics that Carlos accuses of pushing the false narrative. Maybe it's rigged? Perhaps this is all a conspiracy, and Carlos is the only one fighting the good fight? Nah, it's more likely that Carlos is hopelessly confused by the genetic data, which he is unable to comprehend and interpret, let alone analyze himself. Is the computer still too busy to run anything Carlos? Maybe one day, eh?

At the risk of suffering significant brain rot, let's wrap things up with a quick look at a couple of Carlos' somewhat comical attempts to expose and challenge the supposedly false mainstream narrative.

Back in 2017, Jones et al. authored an ancient DNA paper on the genetic prehistory of the East Baltic region titled The Neolithic Transition in the Baltic Was Not Driven by Admixture with Early European Farmers (see here). One of the key samples in this paper was Latvia_LN1, a female from an early CWC burial.

The authors noted that this individual was, in terms of genome-wide genetic structure, practically identical to the samples from the Early to Middle Bronze Age PC steppe (in other words, including those from Yamnaya burials) and logically concluded that the CWC in the Baltic region was founded by Yamnaya-related migrants coming directly from the PC steppe. But, as you can imagine, Carlos was flabbergasted by this suggestion:

I keep expecting that more information is given regarding the important sample labelled “Late Neolithic/Corded Ware Culture” from Zvejnieki ca. 2880 BC. It seems too early for the Corded Ware culture in the region, clusters too close to steppe samples, and the information on it from genetic papers is so scarce… My ad hoc explanation of these data – as a product of recent exogamy from Eastern Yamna -, while possibly enough to explain one sample, is not satisfying without further data, so we need to have more samples from the region to have a clearer picture of what happened there and when. Another possibility is a new classification of the sample, compatible with later migration events (a later date of the sample would explain a lot).

Blah, Blah...please let it be a mistake, says Carlos (see here for the full treatment if you're game). But surely for anyone who understood all of the relevant ancient data available at the time, this was the expected outcome. It certainly was for me. That's because the CWC samples sequenced to date showed very high genetic affinity to Yamnaya, and, on average, more than 70% admixture either from Yamnaya or a very closely related source.

Indeed, a few months later, in a paper titled The genetic prehistory of the Baltic Sea region, which I already linked to above, Mittnik et al. presented another two Baltic CWC individuals of the same exceedingly Yamnaya-like type. Again, these authors argued that the CWC in the Baltic region was established by migrants coming from the PC steppe. But Carlos wouldn't have any of it:

If we take the most recent reliable radiocarbon analyses of material culture, and interpretations based on them of Corded Ware as a ‘complex’ similar to Bell Beaker (accepted more and more by disparate academics such as Anthony or Klejn), it seems that the controversial ‘massive’ Corded Ware migration must have begun somehow later than previously thought, which leaves these early Baltic samples still less clearly part of the initial Corded Ware culture, and more as outliers waiting for a more precise cultural context among Late Neolithic changes in the region.

Controversial? Only in his mind. As far as I'm able to understand his ramblings (see here for the full treatment if you're still game), he attempts to explain these samples as either Yamnaya individuals who were wrongly associated with the CWC, or female Yamnaya migrants who ended up in CWC territory as a result of long range female exogamy between Yamnaya and CWC populations. What he apparently failed to notice was that one of these samples, labeled Gyvakarai1, was a male who belonged to R1a-M417. Oops.

See also...

Corded Ware people =/= Proto-Uralics (Tambets et al. 2018)

Late PIE ground zero now obvious; location of PIE homeland still uncertain, but...

Wednesday, August 8, 2018

The South Asian cline that no longer exists


Before the Indo-Europeans and Austroasiatics got to South Asia, probably well within the last 4,000 years, it's likely that all of the genetic variation in the region basically sat along a genetic cline devoid of any Bronze Age steppe and Southeast Asian ancestry, like the one in the Principal Component Analysis (PCA) below running from the Paniya to the "Indus Periphery" ancient sample Shahr_I_Sokhta BA2.


Note that almost all of the South Asian populations, including the Iron Age (IA) Swat Valley groups, are clearly peeling away from the said cline towards the Tajiks, in other words towards Central Asia. This is a reflection of the widespread presence of Sintashta-related steppe admixture among South Asians, especially those speaking Indo-European languages. Moreover, the Bangalis and Burushos are being pushed towards the top left of the plot as a result of East Asian-related ancestry. In the case of the former, this is largely due to gene flow from Austroasiatic groups.

It'll be interesting to see how ancient Harappans behave in this analysis. I'm betting that they'll be very similar to the Indus Periphery trio, although judging by the latest press report on the topic (see here), the Harappan samples from Rakhigarhi might be shifted much closer to the Paniya as a result of a higher ratio of indigenous South Asian ancestry.

The PCA is based on my Global25 test. If you're South Asian and in the possession of Global25 coordinates, you can add yourself to this plot using the datasheet available here. Plug the datasheet into the PAST program (freely available here), select all of the columns, and go Multivariate > Ordination > Principal Components (PCA).

Update 10/08/2018: I managed to almost reproduce my PCA with a graph based on D-stats of the form D(Mbuti,X)(Onge,Ganj_Dareh_N)/D(Mbuti,X)(Ganj_Dareh_N,Sintashta_MLBA). Admittedly, Gonur2_BA didn't want to cooperate by pushing slightly up and away from the ghost South Asian cline. But this may have been due to a lack of data or perhaps minor admixture (keep in mind that this sample is actually from Turkmenistan and not South Asia). However, combining all three of the Indus_Periphery individuals worked well enough. The relevant datasheet is available here.


See also...

Global25 PAST-compatible datasheets

Global25 workshop 1: that classic West Eurasian plot

Global25 workshop 2: intra-European variation